Skip to main content

Robust morphological scale-space trees

  • Conference paper

Abstract

This paper derives a new tree representation of an image and shows how the tree may be derived from graph morphology and connected-set, alternating sequential, filters. The resulting scale tree forms a pyramid of increasing size objects where the nodes correspond to features of a particular scale. The tree structure itself may be made fairly insensitive to geometrical changes in the image. By parsing the tree and using attributes associated with the nodes, image processing operations such as filtering, segmentation and detection can be performed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Pereira. MPEG 4: a new challenge for the representation of audio-visual information. In Proc. Picture Coding Symposium 1996, 1996.

    Google Scholar 

  2. P.J. Burt and E.H. Adelson. The laplacian pyramid as compact image code. IEEE Transactions on Communication, COM-31:532–540, 1983.

    Article  Google Scholar 

  3. A. Lanitis, C.J. Taylor, and T.F. Cootes. A unified approach to coding and interpreting face images. In Proceedings of the Fifth International Conference on Computer Vision, pages 368–373, 1995.

    Google Scholar 

  4. J. Daugman. Complete discrete 2-d gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoustics Speech and Sig. Proc, 36:1169–1179,1988.

    Article  MATH  Google Scholar 

  5. E.P. Simoncelli, W.T. Freeman, E.H. Adelson, and D.J. Heeger. Shiftable multi-scale transforms. IEEE Trans, on Info. Theory, 38(2):587–607, March 1992.

    Article  MathSciNet  Google Scholar 

  6. M. Unser, A. Aldroubi, and M. Eden. A family of polynomial spline wavelet transforms. IEEE Trans. on Sig. Proc, 30(2):141–162, Jan 1993.

    MATH  Google Scholar 

  7. T. Lindeberg. Scale-space theory in computer vision. Kluwer, 1994.

    Google Scholar 

  8. J. Serra. Image Analysis and Mathematical Morphology vol 1. Academic Press, New York, 1982.

    Google Scholar 

  9. G. Matheron. Random sets and integral geometry. Wiley, 1975.

    MATH  Google Scholar 

  10. H. Blum. Biological shape and visual science (part 1). J. Theoret. Biol, pages 205–287, 1967.

    Google Scholar 

  11. L. Vincent. Morphological area openings and closings of greyscale images. In Workshop on Shape in Picture. NATO, 1992.

    Google Scholar 

  12. Corinne Vachier and Fernand Meyer. Extinction value: a new measurement of persistence. In Ionas Pitas, editor, Proc. of 1995 IEEE Workshop on nonlin. sig. and image proc, volume 1, pages 254–257, June 1995.

    Google Scholar 

  13. J. Serra and P. Salembier. Connected operators and pyramids. In Proceedings of SPIE Conf. on Image Algebra and Mat. Morph., Volume 2030, pages 65–67, 1993.

    Google Scholar 

  14. R. Harvey, J.A. Bangham, and A. Bosson. Scale-space filters and their robustness. In Proc. First Int. Conf. on Scale-space theory, pages 341–344. Springer, 1997.

    Google Scholar 

  15. J. J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. P. Witkin. Scale-space filtering. In 8th Int. Joint Conf. Artificial Intelligence, pages 1019–1022. IEEE, 1983.

    Google Scholar 

  17. P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Patt. Anal Mach. Intell, 12(7):629–639, July 1990.

    Article  Google Scholar 

  18. J.A. Bangham, P.D. Ling, and R. Harvey. Nonlinear scale-space causality preserving filters. IEEE Trans. Patt. Anal Mach. Intell, 18:520–528, 1996.

    Article  Google Scholar 

  19. J.A. Bangham, P. Chardaire, C.J. Pye, and P.D. Ling. Multiscale nonlinear decomposition: the sieve decomposition theorem. IEEE Trans, on Pattern Analysis and Machine Intelligence, 18(5):529–539, 1996.

    Article  Google Scholar 

  20. H.J.A.M. Heijmans, P. Nacken, A. Toet, and L. Vincent. Graph morphology. Journal of Visual Computing and Image Representation, 3(l):24–38, March 1992.

    Article  Google Scholar 

  21. J.A. Bangham, R. Harvey, and P.D. Ling. Morphological scale-space preserving transforms in many dimensions. J. Electronic Imaging, 5(3):283–299, July 1996.

    Article  Google Scholar 

  22. D. Marr. Vision. W. H. Freeman and Company, New York, 1982.

    Google Scholar 

  23. Phillippe Salembier, Albert Oliveras, and Luis Garrido. Motion connected operators for image sequences. In Sig. Proc. VIII Proc. Eusipco-96, volume 2, pages 1083–1086. Edizioni LINT, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this paper

Cite this paper

Bangham, J.A., Hidalgo, J.R., Harvey, R. (1998). Robust morphological scale-space trees. In: Marshall, S., Harvey, N.R., Shah, D. (eds) Noblesse Workshop on Non-Linear Model Based Image Analysis. Springer, London. https://doi.org/10.1007/978-1-4471-1597-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1597-7_21

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-76258-4

  • Online ISBN: 978-1-4471-1597-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics