
Expressing Object Residency Optimizations
Using Pointer Type Annotations

J. Eliot B. Moss and Antony L. Hosking
Object Systems Laboratory, Department of Computer Science

University of Massachusetts; Amherst, MA 01003, USA

Sixth International Workshop on Persistent Object Systems

Tarascon, Provence, France, 5–9 September 1994

Abstract

We consider some issues in optimizing persistent programming languages. In partic-
ular, we show how to express optimizations of object residency checks in strongly
typed persistent languages as “annotations” on pointer types. These annotations es-
sentially extend and refine the type system of the language, and they have at least
two significant uses. First, a programmer can use them to express desired residency
properties to be enforced by the language implementation (compiler plus run time).
Second, we can use them to separate a persistence optimizer, which adds annotations,
from the remainder of the compiler, which simply obeys them. This gives rise to a nice
separation of concerns in supporting high-performance persistence: the “intelligent”
optimizer can be factored off from the rest of the compiler.

In addition to modularity benefits, the separation allows us to explore the value of
various optimizations without actually implementing them in the optimizer. Rather,
we can optimize programs by hand and compare optimized and unoptimized code
to develop sound data to use when deciding whether to implement an optimization.
While the approach is similar to source-to-source optimizers, which are by no means
a new idea, in our case the target language is an extension of the source language,
and one specifically designed to be easier to compile well. We are applying the
approach in our ongoing implementation of Persistent Modula-3. We present the type
annotation approach in the context of Modula-3, but it should be applicable to any
strongly typed persistent programming language, as well as to a range of other kinds
of optimizations.

1 Introduction and Motivation

We have been developing run time support and an optimizing compiler for Persistent
Modula-31 for some time. In the process we have conceived of a number of optimizations
one might consider to improve performance of persistent programs [HM90, HM91], and
have compared several approaches to dealing with (among other things) object faults
(attempts to use persistent objects that are not currently resident (i.e., not actually in the
process’s virtual address space)), in our Persistent Smalltalk implementation [HM93a,
HM93b]. Most of the optimizations we have thought of require reasonably powerful data
flow analysis and code transformations, such as hoisting or combining residency checks,
or imposing special rules that complicate the compiler such as: “the first argument of

1For further information on Modula-3 see [CDG+88, CDG+89, CDG+91, Nel91, Har92]; for further
information on our persistence work see [MS88, Mos89, Mos87, Mos90, HMB90, HM90, HM91, Hos91,
Mos92, HM93a, HBM93, HM93b].



a method call (i.e., the target object) will (somehow) automatically be made resident
throughout the execution of the method” (so that the method code need not contain checks
on uses of the target object). Implementing these optimizations would require a lot of
effort in the back end of a modern optimizing compiler (such as the GNU C compiler,
whose back end we use in this work). We concluded that it would be best to explore the
effectiveness of a variety of optimizations before trying to implement them.

We were willing to hand optimize a collection of benchmark programs, but we still
needed a way to express the possible results of the optimizations. The point here is to be
able to control the code emitted by the compiler. Since we were working in the context
of a statically typed, compiled, object-oriented language (Modula-3 with persistence
extensions), we decided to try expressing the results of optimizations in the type system,
giving rise to the overall approach that is the point of this paper.

We organize the remainder of the presentation as follows. First we describe relevant
aspects of Persistent (and non-persistent) Modula-3. Then we briefly review object faulting
and object residency checking, and enumerate some ways of implementing them. Next, we
argue for residency check optimization and present a list of residency related optimizations
one might want to explore. We then explain how we use types and type conversions to
express residency knowledge and residency checks, and show how the approach can
express the desired optimizations in the various implementation approaches. We finish
with a few concluding remarks.

2 Relevant Aspects of Persistent Modula-3

Modula-3 is a strongly typed object-oriented language in the tradition of Pascal and
Modula-2. To Modula-2 it adds: object types (in a single inheritance hierarchy), auto-
matic storage management (garbage collection), exception handling, threads (lightweight
processes running in the same address space), and generic interfaces and modules (tem-
plates that are expanded syntactically as needed, to form members of a parameterized
family of interfaces and modules). Here we are most concerned with types, procedure
calls, and method calls in Modula-3, and assume the reader can grasp other constructs
intuitively from a knowledge of Pascal or Modula-2.

Unlike some object oriented languages (e.g., Smalltalk [GR83] and Trellis/Owl
[SCB+86]), Modula-3 is not uniformly object oriented: it has a full collection of non-
object primitive types (INTEGER, REAL, range, enumeration, etc.) and type constructors
(RECORD, ARRAY, REF, PROC, etc.) in addition to object types. Again we assume that
our example code fragments can be grasped intuitively from knowledge of Pascal. A
Modula-3 object type consists of a supertype, which must be another object type (pos-
sibly the built in type ROOT), zero or more (new) fields, declared and used analogously
to record fields, zero or more (new) methods, which are names bound to procedures to
be invoked when the named method is called, and zero or more overrides of supertype
method bindings, with the following syntax:

[super] OBJECT fields [METHODS methods] [OVERRIDES overrides] END

This example shows a trivial point data type, giving only the methods for manipulat-
ing points, without implementations, and then giving representation and implementation
details in a subtype.2

2In Modula-3 one would actually use opaque types to hide the representation type p rep and yet have it be
the actual type used for point. The type point here has no data and no method implementations; it is useful



TYPE
point = ROOT OBJECT

METHODS scale(by: REAL): point; ...
END;

p rep = point OBJECT x, y: INTEGER;
OVERRIDES scale := scale point;
END;

Modula-3 allows (appropriately constrained) self-reference, and use of names in a scope
without respect to their order of declaration, so it is easy to define recursive types, such as
this:

TYPE ilist = REF RECORD i: INTEGER; next: ilist; END;

It is worthwhile to note that Modula-3 object types are implicitly pointers to dynamically
allocated memory containing the object fields (and a reference to the method suite of the
object3), thus a more object oriented form of the integer list type would be:

TYPE olist = OBJECT i: INTEGER; next: olist; END;

Modula-3 procedure call is straightforward. There are three argument binding modes:
by value, which is the default, by reference, indicated by VAR, and by reference but
without rights to modify the argument, indicated by READONLY. Modula-3 exception
handling is irrelevant here, so we will not describe it. A Modula-3 method call is in most
respects like an ordinary procedure call. However, the target object is not explicitly listed
in the method’s call interface (being implied from the object type), as can be seen from
scale in the point object type example. Note, though, that the procedure bound to
scale would include the target object as its first argument, for example:

PROCEDURE scale point (p: p rep; by: REAL): p rep = ...

The language’s (sub)type checking rules allow scale point as an implementation of
scale in this case. Here is an example of a method call:

p: point := ...;
p.scale(2.5);

Thus far we have described non-persistent Modula-3. To add persistence to Modula-
3, we changed very little [HM90]: we re-interpreted REF t to mean a reference to a
(possibly) persistent instance of t, and likewise for object types. By “possibly persistent”
we mean that newly created instances need not be created in the store (as opposed to
existing only in main memory), unless they are reachable from a persistent root object
at a designated time (checkpoint). As a side note, we observe that Modula-3 includes
UNTRACED REF t in addition to REF t; untraced pointer types are managed with
explicit allocation and deallocation and are not traced by the garbage collector. They
are useful on occasion, e.g., for allocating fixed I/O buffers and the like. In [HM90] we
added TRANSIENT REF t. By analogy with untraced types, transient pointer types
refer to instances that can never become persistent. Again, they appear to have occasional
uses, but from here on we will ignore untraced and transient pointer types since they are
irrelevant here.

only to document the interface and as a foundation for implementations. Since opaque types are not relevant to
this work, we discuss them no further.

3A Modula-3 method suite is a vector of pointers to code for methods; the C++ terminology is “virtual
function table”.



3 Object Faulting and Residency Checking

The whole idea of a persistent programming language is to provide transparent access
to objects maintained in a persistent object store. Unlike simply reading and writing
blocks of data using traditional file I/O, a persistent programming language and object
store together preserve object identity: every object has a unique identifier (in essence,
an address, possibly abstract, in the store), objects can refer to other objects, forming
graph structures, and they can be modified, with such modifications being visible in future
accesses using the same unique object identifier.

Given adequate address space, one could read in (or map into virtual memory) the
entire object store, but, as many others do (and for good reasons we will not get into
here), we assume that such an implementation strategy is not preferred. Thus, as a
program runs, we will need to load objects on demand, from the persistent object store
into main (or virtual) memory. An object fault is an attempt to use a non-resident object.
Object faulting relies on object residency checks, which can be implemented explicitly in
software, or performed implicitly in hardware and giving rise to some kind of hardware
trap for non-resident objects. Object faulting also relies on mechanisms to load objects
from the store into memory, and ultimately to write (at least the modified) objects back. In
a complete environment one must also integrate support for concurrency control, recovery,
and distribution, but we focus primarily on object residency aspects of persistent systems
here.

A wide range of object faulting schemes have been devised ([ACC82, BC86, KK83,
Kae86, CM84, RMS88, SMR89, BBB+88, Ric89, SCD90, WD92, HMB90, Hos91,
HM93a, LLOW91, SKW92, WK92] are not exhaustive). Any scheme has some number
of distinct situations, such as a reference to a resident object (which presumably can be
used without causing an object fault), versus a reference to a non-resident object. We are
concerned only with situations that require the compiler to generate distinct code; such
distinct situations give rise to corresponding representations. For example, in schemes
that drive all faulting with memory protection traps and make object faulting entirely trans-
parent to compiled code (such as [SMR89, SCD90, LLOW91, SKW92]), there is only
one representation: apparently resident objects. However, we have gathered evidence
that such totally transparent schemes do not always offer the best performance [HM93a,
HM93b, HBM93, HMS92]. Hence we will be most interested in schemes that have more
than one representation.

We list below a range of possible representations. Any given scheme may combine a
number of them, though not all subsets make a lot of sense. Also, at any given point in
a program, an optimizer can develop an upper bound on the representations possible for
each pointer, but in general multiple representations may be possible (e.g., it may not be
able to establish whether a given object is resident or not, and the two situations may have
different representations). We further observe that schemes differ in whether, when, and
how they swizzle pointers, i.e., convert between (possibly) different formats used in the
persistent store and in main memory.4

Direct pointer: a direct (virtual memory) pointer to an apparently resident object; either
the object is actually resident, or hardware traps may be used to make it resident if
the pointer is used; requires no check5

4For more background on swizzling, the reader may start with [Mos92, WD92, WK92].
5While the pointer manipulation code is the same, pointers to resident objects (arranged by prefetching, etc.),

and pointers that will trap when used, have different performance characteristics, and ultimately we might care
to distinguish between them.



Object Identifier: a unique object identifier, which requires some kind of table lookup to
locate the corresponding object’s data in memory; this is assumed complex enough
to require a call, and the lookup routine will make the object resident if it is not yet
so; avoids swizzling but may incur repeated lookup costs

Indirect pointer: a pointer to a cell containing a pointer to the object’s contents; similar
to the direct pointer scheme, but this is more flexible in that one need not allocate
address space for object contents prior to loading the object (and hence need not
know the object’s true size in advance); requires no check

Fault block: a pointer to a fixed size block of memory that contains the object’s unique
identifier; causes a fault when used

Proxy object: a pointer to an object that stands in for a non-resident object; has a method
suite, all of whose methods will load the true object; field access must load the
object, but method call is transparent

Indirect object: a pointer to an object that stands in for a (now) resident object; has a
method suite, all of whose methods forward calls to the true object; field access
must forward explicitly, but method call is transparent.

A number of schemes can be developed by choosing appropriate subsets of these repre-
sentations. Of course, when representations require different code, they must be distin-
guishable one from another, so that when a pointer has multiple possible representations
at a given use, the compiler can generate tests to discriminate. Here are a few schemes, to
give a sense of the possibilities:

� Direct pointer (only): completely transparent, requires either hardware traps or
preloading all reachable objects

� Direct pointer + fault block: used in our Persistent Smalltalk implementation,
requires explicit checks to discriminate (which, by system design, we localized
primarily to method invocation)

� Direct pointer + object identifier: requires a tag bit in pointers; may result in excess
object identifier lookups, which are partly avoided by faulting on load of a pointer
(“swizzle on discovery”) rather than on use of it

� Object identifier (only): useful if a pointer is not traversed very many times during
a program’s execution (avoids overhead of swizzling)

� Direct pointer + proxy object + indirect object: proxy, indirect, and ordinary objects
must be distinguishable on field access, but method call is transparent; field access
can be turned into method call to gain complete transparency (but possibly higher
overhead)

� Direct pointer + proxy object: avoiding indirect objects speeds use of resident
objects, but requires removal of indirections when objects are loaded, which can be
costly



4 Some Residency Optimizations

We now consider residency checking optimizations one might want to use in trying to
improve performance of programs written in a persistent programming language. Here is
a list of some optimizations we have thought of in our work:

Local subsumption: If we dereference the same pointer multiple times in a piece of
straight line code, the first use will force residency. If we additionally impose an
appropriate rule pinning the object, i.e., preventing it from from being removed
from the address space, at least until the last use in the straight line code, then
remaining uses need not check residency. We note again that subsumption is
similar to common subexpression elimination, but differs in that it has a side effect
(but is idempotent).6

Global subsumption: Given appropriate data flow analysis, one can apply subsumption
across basic blocks, intra- or inter-procedurally. The result is similar to hoisting
common subexpressions.

Target object residency: Since invoking a method requires first making the target ob-
ject resident, method code can assume target residency. This could yield great
improvements in programs written in object-oriented style.7

Formal parameter assertions: It may be useful to require a procedure or method argu-
ment to be resident before making a call. If the caller knows the object is resident,
no checks are needed in either the caller or the callee. If we only use hoisting, and
perform residency checks near the beginning of a procedure, we cannot eliminate
checks where the caller knows the object is resident. Formal parameter assertions
are especially useful for “internal” methods (called only from public methods),
some recursive calls, and non-object-oriented code.

Procedure result assertions: If a procedure returns a newly created object, or one guar-
anteed to be resident (either because the procedure caused it to be or because the
object was guaranteed to be resident on entry to the procedure), then it can help the
caller and other downstream code to know that.

Data type assertions: In the case of a data type with multiple levels of pointers, it might
be convenient to fault in several levels of objects at once (they may arrive together
anyway, with proper clustering8), and avoid checks when traversing the levels. This
can be accomplished by associating residency assertions with pointers inside data
structures. We observe that for recursive data structures, placing such assertions on
the recursion pointers (such as the next field of our ilist type example) may
require a large closure of objects to be made resident (but may be a good idea if the
objects are likely to be used).

6The original implementation of the E programming language [Ric90, RC90, Ric89] included an optimization
similar to subsumption. It operated in a more general model, where the unit of access was byte ranges of objects,
and could unify overlapping ranges in both space and time. However, it was applied in a somewhat ad hoc
manner in the cfront implementation of E, and abandoned in later versions of E (after Richardson’s departure
from the group).

7Actually, type inference and other techniques might enable the compiler to know the precise type and avoid
an object oriented dispatch, in which case it might need to introduce an explicit check.

8Clustering is an important issue because it affects I/O performance, which can be more noticeable than
incremental CPU overheads, but it is outside the scope of this paper. However, see the discussion of clustering
towards the end of the paper.



A converse sort of assertion would be that a reference is rarely traversed, and would
best be kept in object identifier form and looked up on each use.

Of these optimizations, subsumption is likely always to be profitable—its only negative
effect is pinning objects longer (and requiring support for such pinning, which may in
turn require compiler produced tables for the run time system to use in determining which
objects are pinned (along the lines of compiler support for accurate garbage collection
[DMH92, Diw91, HMDW91])). Similarly, target object residency is probably almost
always a good idea: it would be rare for the target of a message not to be used and for the
method to be statically known. Formal parameter assertions require more care to prevent
objects from being loaded if they are not always used. Data type assertions run even more
risks, but can have high payoff. They may require profile feedback in addition to static
analysis for an optimizer to make good decisions.

5 Using Types in Residency Optimization

Now we describe in more detail the central idea of the paper, which is to express per-
sistence representation assertions as qualifications on pointer types. It is convenient to
choose a particular, fairly interesting, scheme as a basis for presentation; we trust the
application to other schemes will then be obvious. Our example scheme’s representations
are proxy objects, direct pointers, and object identifiers. Now a scheme includes exactly
the possible degrees of knowledge the implementation may have concerning object res-
idency: each state of knowledge can be described as a non-empty subset of the set of
allowed representations. In our scheme we allow precisely these subsets:

f proxy, direct g, f direct g, f object identifier g

Why these? First, these groupings avoid the need to discriminate dynamically between
pointers and object identifiers, which puts fewer constraints on the representation of object
identifiers. That explains the absence of any other subsets containing “object identifier”.
Second, fproxyg just does not seem very useful, since it requires work in exactly the same
cases as fproxy, direct pointerg. Note that one can certainly conceive of allowing more
subsets, etc. Clearly there are many possible schemes in our approach!

We use REF t to indicate fproxy, direct pointerg knowledge, RES REF t (for
resident reference) for fdirect pointerg, and ID REF t for fobject identifierg; we use
similar annotations on object types.9 In some sense these types do not all support the
same operations: an ID REF requires lookup to dereference it or perform a method call,
a REF requires discrimination and possible conversion on dereference (but not method
call), a RES REF supports all operations directly. We can define a strict language, where
field access is permitted only via a RES REF, and method call is allowed on REF or
RES REF, and we supply conversion operators between all pairs of annotations. Note
that all these kinds of pointers are equivalent at the level of language semantics—they
differ only in their implementation properties. The situation is analogous to packed and
unpacked data structures, which represent the same values in different ways. The strict
language might be tiresome for humans. It is easy to extend the strict language to allow all
operations on all pointer representations, with the necessary conversions being implied,
into temporary variables that are used and then discarded. We will posit built-in functions
TO REF, TO RES, and TO ID that perform explicit conversions (again the syntax is

9The syntax really does not matter much for our purposes. In practice one might use pragmas rather than
new keywords, so that annotated programs can still be processed by unextended compilers, etc.



not that important here). Let us now consider how the various optimizations can be
represented using these annotations.

Local subsumption: We can introduce a new local variable that is a RES REF, and
use it multiple times:

Unoptimized Optimized
tmp: RES REF t := TO RES(p);

... pˆ.x ... ... tmpˆ.x ...

... pˆ.y ... ... tmpˆ.y ...
Global subsumption: Again, we can introduce a new RES REF local variable, set

it at the point where we want to hoist the residency check, and use it subsequently (no
example needed).

Target object residency: The issue here is having a way to express, for each method of
an object type, its target object residency assumptions, and to insure that the procedures
bound to methods conform to those assumptions. One way to accomplish this is to
associate annotations with method names in object types, e.g.,:

TYPE
point = ROOT OBJECT

METHODS RES scale(by: REAL): point; ...
END;

Any procedure bound to scale must declare its first argument in a manner compatible
with the method’s RES annotation. In this case RES REF or plain REF would be all
right, but ID REF would not be.

Formal parameter and result assertions: Similar to target object residency tags, we
associate tags with procedure formals and results:

PROCEDURE scale point (p: RES(p rep); by: REAL):
RES(p rep) = ...

This is more general than target object residency annotations because it can apply to any
argument position for a procedure, and because it applies to ordinary procedure call in
addition to method calls. Any necessary conversions are performed by the caller, either
to arguments (before the call) or results (after the call, and only if the result is used). Note
that here the RES built-in function is being applied to types rather than objects.

Data type assertion: It is easy to devise a form for these assertions: we allow residency
annotations on the types used in record fields, object fields, arrays, etc., not unlike the
parameter and result annotations. The meaning and the manipulation rules are a bit more
subtle, however. Consider this recursive type declaration:

TYPE rolist = RES OBJECT i: INTEGER; next: rolist; END;

Here the entire list must be resident. If the entire list is not accessed, this may load more
objects than necessary. (One can use hardware trap driven loading rather than software
pre-loading to prevent this over-loading, but hardware traps come with their own fielding
costs.) This only indicates that the assertions must be used with care. We have more of
a problem if we wish to use different annotations with the same underlying type, in the
same program. For example, suppose we have both the declaration above and this one:

TYPE idolist = ID OBJECT i: INTEGER; next: idolist; END;



At first glance one might think that we could convert between object references of type
rolist and type idolist, though it might involve traversing the list and converting
all the embedded references. Unfortunately, this does not work because the list could then
be referred to via pointers of both types simultaneously, which gives rise to inconsistent
assertions on the next field of the objects. This difficulty is not an artifact of our notation,
but is inherent: a given program must represent a given object consistently.10 Similar
concerns precluded subtyping between record types (etc.) in Modula-3 (see the “How the
Language Got Its Spots” discussions in [Nel91]). It is not yet clear whether the restriction
to consistent annotations has significant performance impact.

As an additional note, we observe that one can “unroll” a recursive type any fixed
number of times, and place different assertions at each place around the type “loop”.
However, since this appears to require similar unrolling of all related recursive procedures
(as well as iterative loops), it is not obvious one would want to do it very often. (A similar
optimization has been suggested for a Standard ML implementation [SRA94].)

6 Clustering

While we have focused on the problem of residency check optimization, the annotations we
propose also bear some relation to clustering and prefetching of persistent data, especially
in the case of data type assertions. In particular, if a data type annotation indicates that the
target of a given pointer field should be resident, then we have two basic options in the
implementation: force residency when the “root” of the data structure is made resident, or
use a transparent (probably protection trapping) technique. Since the code generated is the
same in each case, one can actually decide at run time what to do. For example, one can set
up pointers for objects that are actually resident or that arrive in the same cluster as the root
object, and use protection traps for excursions outside that region. A possibly interesting
hybrid approach is to set protection traps while simultaneously requesting the non-resident
clusters. When the clusters arrive, objects could be swizzled and page protections turned
off (unless, of course the application has already hit the protection barrier, in which case
it must wait anyway).

In any case, the annotations can be thought of either as expressing existing clustering
(to the extent that such a static method can express it), or expressing desired clustering.
Note, though, that clustering is a global decision affecting all applications using the same
data, so if the different applications have different clustering preferences, we have to
reach some compromise. (One might replicate data with different clustering, but this also
induces tradeoffs if the data are updated often.)

The essential point is that while the clustering problem is similar to the residency
check optimization problem, and while we might use similar annotation schemes for each,
we probably need separate annotations for clustering and residency optimization. We also
observe that while the annotations we have discussed are adequate to control the code
produced, they are not adequate for more sophisticated control of prefetch. Prefetch is
more closely related to residency, so we may prefer annotations that integrate residency and
prefetch guidance to the compiler and run-time system, with clustering handled separately.

10Note, though, that residency annotations essentially do not exist in the object store, and different programs
can use different annotations with no problems.



7 Conclusion

We have shown how one can control fairly precisely the placement of residency checks
and conversions, and express a range of interesting residency optimizations, using pointer
type annotations. The technique appears to be reasonably simple and should be effective
in its goals of separating residency optimization decisions from their implementation. Of
course the general idea is not new—source to source transformations are widely used in
optimizing programs, especially for parallel machines. Even the type tagging approach
was suggested by Modula-3’s UNTRACED REF and REF types, and the notion of multi-
ple representations of the same value is also fairly obvious (e.g., packed versus unpacked
types). Similar annotation techniques have been used in distributed programming lan-
guages to distinguish local versus remote, and so forth [BHJ+87]. Perhaps we can take
credit for a slightly new application of old ideas.

While we tentatively conclude that the approach is effective towards our goals, what
are its limits? How else might the general technique be used? Since similar annotations
have been used in distributed programming languages, the approach seems to extend to
that situation. We also believe that pointer type annotations might be applied successfully
in indicating compiler knowledge of concurrency control status. In a lock based system
we might distinguish unlocked, share mode locked, and exclusive mode locked. Unlike
the residency case, where we left unpinning an object as somewhat vague and unspecified,
with concurrency control it is probably important to be clear about when an object becomes
unlocked. The difference is that locking is semantically significant, whereas residency
optimization affects only performance, not semantics. Another possible application of
pointer type annotations is in reducing work in recording which objects are modified as a
persistent program executes. Modification noting is analogous to residency checking in
that it is idempotent (provided the object is not written back to the store in between the
modifications). Thus similar techniques might apply. The problem is that modification is
likely to be more dynamic, so the particularly static techniques we used might not work
out as well.

More generally, the exact limits of applicability of pointer type annotations in opti-
mization are not clear. Certainly source to source transformation is limited by the target
language in its expressiveness. For example, address calculation such as that required for
array subscripts cannot be expressed directly in Fortran, though it can be in C, etc. In any
case, perhaps the point is that the technique works for us in this application.

References

[ACC82] Malcolm Atkinson, Ken Chisolm, and Paul Cockshott. PS-Algol: an Algol
with a persistent heap. ACM SIGPLAN Not., 17(7):24–31, July 1982.

[BBB+88] Francois Bancilhon, Gilles Barbedette, Véronique Benzaken, Claude
Delobel, Sophie Gamerman, Cristophe Lécluse, Patrick Pfeffer, Philippe Richard, and
Fernando Velez. The design and implementation of O2, an object-oriented database
system. In Dittrich [Dit88], pages 1–22.

[BC86] A. L. Brown and W. P. Cockshott. The CPOMS persistent object management
system. Technical Report Persistent Programming Research Project 13, University of St.
Andrews, Scotland, 1986.



[BHJ+87] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and
abstract types in Emerald. IEEE Transactions on Software Engineering, 13(1):65–76,
January 1987.

[CDG+88] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill
Kalsow, and Greg Nelson. Modula-3 report. Technical Report ORC-1, DEC Systems
Research Center/Olivetti Research Center, Palo Alto/Menlo Park, CA, 1988.

[CDG+89] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill
Kalsow, and Greg Nelson. Modula-3 report (revised). Technical Report DEC SRC 52,
DEC Systems Research Center/Olivetti Research Center, Palo Alto/Menlo Park, CA,
November 1989.

[CDG+91] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill
Kalsow, and Greg Nelson. Modula-3 language definition. In Nelson [Nel91], chapter 2,
pages 11–66.

[CM84] George Copeland and David Maier. Making Smalltalk a database system. In
Proceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, pages 316–325, Boston, Massachusetts, June 1984. ACM SIGMOD Rec. 14, 2
(1984).

[Dit88] K. R. Dittrich, editor. Proceedings of the Second International Workshop on
Object-Oriented Database Systems, volume 334 of Lecture Notes in Computer Science,
Bad Münster am Stein-Ebernburg, Federal Republic of Germany, September 1988.
Advances in Object-Oriented Database Systems, Springer-Verlag, 1988.

[Diw91] Amer Diwan. Stack tracing in a statically typed language, October 1991.
Position paper for OOPSLA ’91 Workshop on Garbage Collection.

[DMH92] Amer Diwan, J. Eliot B. Moss, and Richard L. Hudson. Compiler support for
garbage collection in a statically typed language. In Conference on Programming
Language Design and Implementation, pages 273–282, San Francisco, California, June
1992. SIGPLAN, ACM Press.

[DSZ90] Alan Dearle, Gail M. Shaw, and Stanley B. Zdonik, editors. Proceedings of
the Fourth International Workshop on Persistent Object Systems, Martha’s Vineyard,
Massachusetts, September 1990. Published as Implementing Persistent Object Bases:
Principles and Practice, Morgan Kaufmann, 1990.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

[Har92] S. P. Harbison. Modula-3. Prentice Hall, New Jersey, 1992.

[HBM93] Antony L. Hosking, Eric Brown, and J. Eliot B. Moss. Update logging for
persistent programming languages: A comparative performance evaluation. In
Proceedings of the Nineteenth International Conference on Very Large Data Bases,
pages 429–440, Dublin, Ireland, August 1993. Morgan Kaufmann.

[HM90] Antony L. Hosking and J. Eliot B. Moss. Towards compile-time optimisations
for persistence. In Dearle et al. [DSZ90], pages 17–27.



[HM91] Antony L. Hosking and J. Eliot B. Moss. Compiler support for persistent
programming. COINS Technical Report 91-25, University of Massachusetts, Amherst,
MA 01003, March 1991.

[HM93a] Antony L. Hosking and J. Eliot B. Moss. Object fault handling for persistent
programming languages: A performance evaluation. In Proceedings of the Conference
on Object-Oriented Programming Systems, Languages, and Applications, pages
288–303, Washington, DC, October 1993.

[HM93b] Antony L. Hosking and J. Eliot B. Moss. Protection traps and alternatives for
memory management of an object-oriented language. In Proceedings of the Fourteenth
ACM Symposium on Operating Systems Principles, pages 106–119, Asheville, NC,
December 1993.

[HMB90] Antony L. Hosking, J. Eliot B. Moss, and Cynthia Bliss. Design of an object
faulting persistent Smalltalk. COINS Technical Report 90-45, University of
Massachusetts, Amherst, MA 01003, May 1990.

[HMDW91] Richard L. Hudson, J. Eliot B. Moss, Amer Diwan, and Christopher F.
Weight. A language-independent garbage collector toolkit. COINS Technical Report
91-47, University of Massachusetts, Amherst, September 1991.

[HMS92] Antony L. Hosking, J. Eliot B. Moss, and Darko Stefanović. A comparative
performance evaluation of write barrier implementations. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Applications,
pages 92–109, Vancouver, Canada, October 1992. ACM SIGPLAN Not. 27, 10 (October
1992).

[Hos91] Antony L. Hosking. Main memory management for persistence, October 1991.
Position paper presented at the OOPSLA ’91 Workshop on Garbage Collection.

[Kae86] Ted Kaehler. Virtual memory on a narrow machine for an object-oriented
language. In OOPSLA [OOP86], pages 87–106.

[KK83] Ted Kaehler and Glenn Krasner. LOOM—large object-oriented memory for
Smalltalk-80 systems. In Glenn Krasner, editor, Smalltalk-80: Bits of History, Words of
Advice, chapter 14, pages 251–270. Addison-Wesley, 1983.

[LLOW91] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The
ObjectStore database system. Communications of the ACM, 34(10):50–63, October 1991.

[Mos87] J. Eliot B. Moss. Implementing persistence for an object oriented language.
COINS Technical Report 87-69, University of Massachusetts, Amherst, MA 01003,
September 1987.

[Mos89] J. Eliot B. Moss. Addressing large distributed collections of persistent objects:
The Mneme project’s approach. In Richard Hull, Ron Morrison, and David Stemple,
editors, Proceedings of the Second International Workshop on Database Programming
Languages, pages 269–285, Gleneden Beach, Oregon, June 1989. Morgan Kaufmann.
Also available as COINS Technical Report 89-68, University of Massachusetts.

[Mos90] J. Eliot B. Moss. Design of the Mneme persistent object store. ACM Trans.
Inf. Syst., 8(2):103–139, April 1990.



[Mos92] J. Eliot B. Moss. Working with persistent objects: To swizzle or not to
swizzle. IEEE Transactions on Software Engineering, 18(8):657–673, August 1992.

[MS88] J. Eliot B. Moss and Steven Sinofsky. Managing persistent data with Mneme:
Designing a reliable, shared object interface. In Dittrich [Dit88], pages 298–316.

[Nel91] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, New
Jersey, 1991.

[OOP86] Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications, Portland, Oregon, September 1986. ACM SIGPLAN Not.
21, 11 (November 1986).

[RC90] Joel E. Richardson and Michael J. Carey. Persistence in the E language: Issues
and implementation. Software: Practice and Experience, 19(12):1115–1150, December
1990.

[Ric89] Joel Edward Richardson. E: A Persistent Systems Implementation Language.
PhD thesis, Computer Sciences Department, University of Wisconsin, Madison, WI,
August 1989. Available as Computer Sciences Technical Report #868.

[Ric90] Joel E. Richardson. Compiled item faulting: A new technique for managing
I/O in a persistent language. In Dearle et al. [DSZ90], pages 3–16.

[RMS88] Steve Riegel, Fred Mellender, and Andrew Straw. Integration of database
management with an object-oriented programming language. In Dittrich [Dit88], pages
317–322.

[SCB+86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie
Wilpolt. An introduction to Trellis/Owl. In OOPSLA [OOP86], pages 9–16.

[SCD90] D. Schuh, M. Carey, and D. DeWitt. Persistence in E
revisited—implementation experiences. In Dearle et al. [DSZ90], pages 345–359.

[SKW92] Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. Texas, an efficient,
portable persistent store. In Proceedings of the Fifth International Workshop on
Persistent Object Systems, pages 11–33, San Miniato, Italy, September 1992.

[SMR89] Andrew Straw, Fred Mellender, and Steve Riegel. Object management in a
persistent Smalltalk system. Software: Practice and Experience, 19(8):719–737, August
1989.

[SRA94] Zhong Shao, John H. Reppy, and Andrew W. Appel. Unrolling lists. In 1994
ACM Conference on Lisp and Functional Programming, Orlando, Florida, June 1994.

[WD92] Seth J. White and David J. DeWitt. A performance study of alternative object
faulting and pointer swizzling strategies. In Proceedings of the Eighteenth International
Conference on Very Large Data Bases, pages 419–431, Vancouver, Canada, August
1992. Morgan Kaufmann.

[WK92] Paul R. Wilson and Sheetal V. Kakkad. Pointer swizzling at page fault time:
Efficiently and compatibly supporting huge address spaces on standard hardware. In
Proceedings of the 1992 International Workshop on Object Orientation in Operating
Systems, pages 364–377, Paris, France, September 1992. IEEE Press.


