
Conquering Complexity

Mike Hinchey � Lorcan Coyle
Editors

Conquering
Complexity

Foreword by Roger Penrose

Editors
Mike Hinchey
Lero, Irish Software Eng Research Centre
University of Limerick
Limerick, Ireland
mike.hinchey@lero.ie

Lorcan Coyle
Lero, International Science Centre
University of Limerick
Limerick, Ireland
lorcan.coyle@lero.ie

ISBN 978-1-4471-2296-8 e-ISBN 978-1-4471-2297-5
DOI 10.1007/978-1-4471-2297-5
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011944434

© Springer-Verlag London Limited 2012
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:mike.hinchey@lero.ie
mailto:lorcan.coyle@lero.ie
http://www.springer.com
http://www.springer.com/mycopy

Today, “complexity” is a word that is much
in fashion. We have learned very well that
many of the systems that we are trying to deal
with in our contemporary science and
engineering are very complex indeed. They
are so complex that it is not obvious that the
powerful tricks and procedures that served us
for four centuries or more in the development
of modern science and engineering will
enable us to understand and deal with
them. . .
. . . We are learning that we need a science of
complex systems and we are beginning to
develop it.
– Herbert A. Simon

Foreword

The year 2012—of publication of this book Conquering Complexity—is particu-
larly distinguished by being the centenary year of Alan Turing, whose theoretical
analysis of the notion of “computing machine”, together with his wartime work in
deciphering German codes, has had a huge impact on the enormous development of
electronic computers, and the consequent impact that these devices have had on our
lives, particularly with regard to science and technology. It is now possible to model
extremely complex systems, whether they be naturally occurring physical processes
or the predicted behaviour of human-constructed machinery. The complexity that
can now be handled by today’s electronic computers has completely transformed
our understanding of many different kinds of physical behaviour, such behaviour
being taken to act in accordance with the known physical laws. The extreme pre-
cision of these laws, as ascertained in numerous delicate experiments, allows us to
have very considerable confidence in the results of these computations, and when
the computations are done correctly, we may have a justified trust in the expectation
of agreement between the computationally predicted outcomes and the details of ob-
served behaviour. Conversely, such agreement between calculated predictions and
actual physical behaviour reflects back as further confirmation on the very accuracy
of the laws that are employed in the calculations.

However, the very possibility of reliably performing calculations of the extreme
complication that is frequently required raises numerous new issues. Many of these
issues would not have been evident before the advent of modern electronic computer
technology, which has rendered it possible—and indeed commonplace—to enact
the vast computations that are frequently needed. Whereas, our modern computers
can be trusted to perform the needed calculations with enormous speed and accu-
racy, the machines themselves have no understanding of what they are doing nor of
the purposes to which the results of these computations are to be put. It is we who
must supply this understanding. Our particular choices of the actual computations
that are to be performed need to be correct ones that do actually reflect the physical
processes that are intended to be simulated. In addition, there are frequently many
different ways of achieving the same ends, and insight and subtle judgements need
to be employed in the decisions as to which procedures are the most effective to be

vii

viii Foreword

deployed. In my own extremely limited experience, in early 1956, when computer
technology was still in its infancy, I obtained some direct experience of the vast
simplification, even then, that could sometimes be achieved by the reformulation of
a particular calculation into a subtly different one. How much greater is the poten-
tial, now, to improve the speed, accuracy—and indeed the very feasibility—of an
intended simulation. The very enormity of the complexity of so many currently re-
quired computations vastly increases the role of such general considerations, these
often leading to reliable computations that might have otherwise appeared not to
be feasible, and frequently providing a much better understanding of what can in-
deed be achieved in practise. Many such matters are considered in this book, which
address the issue of computational complexity from a great many different points
of view. It is fascinating to see the variety of different types of argument that are
here brought to bear on the issues involved, which so frequently indeed provide the
taming of complexity in its multifarious forms.

Roger Penrose

Preface

Software has long been perceived as complex, at least within Software Engineering
circles. We have been living in a recognised state of crisis since the first NATO
Software Engineering conference in 1968. Time and again we have been proven
unable to engineer software as easily/cheaply/safely as we imagined. Cost overruns
and expensive failures are the norm.

The problem is fundamentally one of complexity—translating a problem spec-
ification into a form that can be solved by a computer is a complex undertaking.
Any problem, no matter how well specified, will contain a baseline of intrinsic
complexity—otherwise it is not much of a problem. Additional complexities ac-
crue as a solution to the problem is implemented. As these increase, the complexity
of the problem (and solution) quickly surpasses the ability of a single human to fully
comprehend it. As team members are added new complexities will inevitably arise.

Software is fundamentally complex because it must be precise; errors will be
ruthlessly punished by the computer. Problems that appear to be specified quite eas-
ily in plain language become far more complex when written in a more formal no-
tation, such as computer code. Comparisons with other engineering disciplines are
deceptive. One cannot easily increase the factor of safety of software in the same
way that one could in building a steel structure, for example. Software is typically
built assuming perfection, often without adequate safety nets in case the unthinkable
happens. In such circumstances it should not be surprising to find out that (seem-
ingly) minor errors have the potential to cause entire software systems to collapse.
A worrying consideration is that the addition of additional safety or fault protection
components to a system will also increase the system’s overall complexity, poten-
tially making the system less safe.

Our goal in this book is to uncover techniques that will aid in overcoming com-
plexity and enable us to produce reliable, dependable computer systems that will
operate as intended, and yet are produced on-time, in budget, and are evolvable,
both over time and at run time. We hope that the contributions in this book will aid
in understanding the nature of software complexity and provide guidance for the
control or avoidance of complexity in the engineering of complex software systems.
The book is organised into three parts: Part I (Chaps. 1 and 2) addresses the sources

ix

x Preface

and types of complexity; Part II (Chaps. 3 to 9) addresses areas of significance in
dealing with complexity; Part III (Chaps. 10 to 17) identifies particular application
areas and means of controlling complexity in those areas.

Part I of the book (Chaps. 1 and 2) drill down into the question of how to recog-
nise and handle complexity. In tackling complexity two main tools are highlighted:
abstraction and decomposition/composition. Throughout this book we see these
tools reused, in different ways, to tackle the problem of Controlling Complexity.

In Chap. 1 José Luiz Fiadeiro discusses the nature of complexity and highlights
the fact that software engineering seems to have been in a permanent state of crisis,
a crisis might better be described as one of complexity. The difficulty we have in
conquering it is that the nature of complexity itself is always changing. His senti-
ment that we cannot hope to do more than “shift [. . .] complexity to a place where
it can be managed more effectively” is echoed throughout this book.

In Chap. 2 Michael Jackson outlines a number of different ways of decompos-
ing system behaviour, based on the system’s constituents, on machine events, on
requirement events, use cases, or software modules. He highlights that although
each offers advantages in different contexts, they are in themselves not adequate to
master behavioural complexity. In addition he highlights the potential for oversim-
plification. If we decompose and isolate parts of the system and take into account
only each part’s intrinsic complexities we can easily miss some interactions between
the systems, leading to potentially surprising system behaviour.

Part II of the book outlines different approaches to managing or controlling com-
plexity. Chapters 3 and 4 discuss the need to tackle complexity in safety-critical
systems, arguing that only by simplifying software can it be proven safe to use.
These chapters argue for redundancy and separation of control and safety systems
respectively.

Gerard Holzmann addresses the question of producing defect-free code in
Chap. 3. He argues that rather than focusing on eliminating component failure by
producing perfect systems, we should aim to minimise the possibility of system
failure by focusing on the production of fallback redundant systems that are much
simpler—simple enough to be verifiably correct. In Chap. 4, Wassyng et al. argue
that rather than seeking to tame complexity we should focus our efforts on avoiding
it altogether whenever reliability is paramount. The authors agree with Holzmann
in that simpler systems are more easy to prove safe, but rather than using redundant
systems to take control in the case of component failure they argue for the complete
separation of systems that must be correct (in this case safety systems) from control
systems.

In Chap. 5, Norman Schneidewind shows how it is possible to analyse the trade-
offs in a system between complexity, reliability, maintainability, and availability
prior to implementation, which may reduce the uncertainty and highlight potential
dangers in software evolution. In Chap. 6, Bohner et al argue that change tolerance
must be built into the software and that accepting some complexity today to decrease
the long term complexity that creeps in due to change is warranted.

Chapters 7 to 9 discuss autonomous, agent-based, and swarm-like software sys-
tems. The complexity that arises out of these systems comes from the interactions
between the system’s component actors or agents.

Preface xi

In Chap. 7 Hinchey et al. point out that new classes of systems are introducing
new complexities, heretofore unseen in (mainstream) software engineering. They
describe the complexities that arise when autonomous and autonomic character-
istics are built into software, which are compounded when agents are enabled to
interact with one another and self-organise. In Chap. 8 Mike Hinchey and Roy Ster-
ritt discuss the techniques that have emerged from taking inspiration from biological
systems. The autonomic nervous system has inspired approaches in autonomic com-
puting, especially in self-managing, self-healing, and other self-* behaviours. They
consider mechanisms that enable social insects (especially ants) to tackle problems
as a colony (or “swarm” in the more general sense) and show how these can be
applied to complex tasks. Peña et al. give a set of guidelines to show how com-
plexity derived from interactions in agent-oriented software can be managed in
Chap. 9. They use the example of the Ant Colony to model how complex goals
can be achieved using small numbers of simple actors and their interactions with
each other.

Part III of the book (Chaps. 10 to 17) discusses the control of complexity in dif-
ferent application areas. In Chap. 10, Tiziana Margaria and Bernhard Steffen argue
that classical software development is no longer adequate for the bulk of application
programming. Their goal is to manage the division of labour in order to minimise
the complexity that is “felt” by each stakeholder.

The use of formal methods will always have a role when correct functioning of
the software is critical. In Chap. 11, Jonathan Bowen and Mike Hinchey examine the
attitudes towards formal methods in an attempt to answer the question as to why the
software engineering community is not willing to either abandon or embrace formal
methods. In Chap. 12 Filieri et al. focus on how to manage design-time uncertainty
and run-time changes and how to verify that the software evolves dynamically with-
out disrupting the reliability or performance of applications. In Chap. 13, Wei et
al. present a timebands model that can explicitly recognise a finite set of distinct
time bands in which temporal properties and associated behaviours are described.
They demonstrate how significantly their model contributes to describing complex
real-time systems with multiple time scales. In Chap. 14 Manfred Broy introduces
a comprehensive theory for describing multifunctional software-intensive systems
in terms of their interfaces, architectures and states. This supports the development
of distributed systems with multifunctional behaviours and provides a number of
structuring concepts for engineering larger, more complex systems.

In Chap. 15, John Anderson and Todd Carrico describe the Distributed Intelligent
Agent Framework, which defines the essential elements of an agent-based system
and its development/execution environment. This framework is useful for tackling
the complexities of systems that consist of a large network of simple components
without central control. Margaria et al. discuss the difficulties in dealing with mono-
lithic ERP systems in Chap. 16. As the business needs of customers change the
ERP system they use must change to respond to those needs. The requirements of
flexibility and customisability introduce significant complexities, which much be
overcome if the ERP providers are to remain competitive. In Chap. 17 Casanova et
al. discuss the problem of matching database schemas. They introduce procedures

xii Preface

to test strict satisfiability and decide logical implication for extralite schemas with
role hierarchies. These are sufficiently expressive to encode commonly-used Entity-
Relationship model and UML constructs.

We would like to thank all authors for the work they put into their contributions.
We would like to thank Springer for agreeing to publish this work and in particular
Beverley Ford, for her support and encouragement. We would like to thank all of
our friends and colleagues in Lero.1

Mike Hinchey
Lorcan Coyle

Limerick, Ireland

1This work was supported, in part, by Science Foundation Ireland grant 03/CE2/I303_1 to Lero–
the Irish Software Engineering Research Centre (www.lero.ie).

http://www.lero.ie

Contents

Part I Recognizing Complexity

1 The Many Faces of Complexity in Software Design 3
José Luiz Fiadeiro

2 Simplicity and Complexity in Programs and Systems 49
Michael Jackson

Part II Controlling Complexity

3 Conquering Complexity . 75
Gerard J. Holzmann

4 Separating Safety and Control Systems to Reduce Complexity 85
Alan Wassyng, Mark Lawford, and Tom Maibaum

5 Conquering System Complexity . 103
Norman F. Schneidewind

6 Accommodating Adaptive Systems Complexity with Change
Tolerance . 121
Shawn Bohner, Ramya Ravichandar, and Andrew Milluzzi

7 You Can’t Get There from Here! Large Problems and Potential
Solutions in Developing New Classes of Complex Computer Systems 159
Mike Hinchey, James L. Rash, Walter F. Truszkowski, Christopher A.
Rouff, and Roy Sterritt

8 99% (Biological) Inspiration. 177
Mike Hinchey and Roy Sterritt

9 Dealing with Complexity in Agent-Oriented Software Engineering:
The Importance of Interactions . 191
Joaquin Peña, Renato Levy, Mike Hinchey, and Antonio Ruiz-Cortés

xiii

xiv Contents

Part III Complexity Control: Application Areas

10 Service-Orientation: Conquering Complexity with XMDD 217
Tiziana Margaria and Bernhard Steffen

11 Ten Commandments of Formal Methods. . . Ten Years On 237
Jonathan P. Bowen and Mike Hinchey

12 Conquering Complexity via Seamless Integration of Design-Time
and Run-Time Verification . 253
Antonio Filieri, Carlo Ghezzi, Raffaela Mirandola, and Giordano
Tamburrelli

13 Modelling Temporal Behaviour in Complex Systems with Timebands 277
Kun Wei, Jim Woodcock, and Alan Burns

14 Software and System Modeling: Structured Multi-view Modeling,
Specification, Design and Implementation 309
Manfred Broy

15 Conquering Complexity Through Distributed, Intelligent Agent
Frameworks . 373
John A. Anderson and Todd Carrico

16 Customer-Oriented Business Process Management: Vision and
Obstacles . 407
Tiziana Margaria, Steve Boßelmann, Markus Doedt, Barry D. Floyd,
and Bernhard Steffen

17 On the Problem of Matching Database Schemas 431
Marco A. Casanova, Karin K. Breitman, Antonio L. Furtado,
Vânia M.P. Vidal, and José A. F. de Macêdo

Index . 463

Contributors

John A. Anderson Cougaar Software, Inc., Falls Church, VA, USA,
janderson@cougaarsoftware.com

Steve Boßelmann TU Dortmund, Dortmund, Germany,
steve.bosselmann@cs.tu-dortmund.de

Shawn Bohner Rose-Hulman Institute of Technology, Terre Haute, USA,
bohner@rose-hulman.edu

Jonathan P. Bowen Museophile Limited, London, UK,
jonathan.bowen@lsbu.ac.uk

Karin K. Breitman Department of Informatics, PUC-Rio, Rio de Janeiro, RJ,
Brazil, karin@inf.puc-rio.br

Manfred Broy Institut für Informatik, Technische Universität München, München,
Germany, broy@in.tum.de

Alan Burns Department of Computer Science, University of York, York, UK,
burns@cs.york.ac.uk

Todd Carrico Cougaar Software, Inc., Falls Church, VA, USA,
tcarrico@cougaarsoftware.com

Marco A. Casanova Department of Informatics, PUC-Rio, Rio de Janeiro, RJ,
Brazil, casanova@inf.puc-rio.br

Markus Doedt TU Dortmund, Dortmund, Germany,
markus.doedt@cs.tu-dortmund.de

José Luiz Fiadeiro Department of Computer Science, University of Leicester, Le-
icester, UK, jose@mcs.le.ac.uk

Antonio Filieri DeepSE Group @ DEI, Politecnico di Milano, Milan, Italy,
filieri@elet.polimi.it

xv

mailto:janderson@cougaarsoftware.com
mailto:steve.bosselmann@cs.tu-dortmund.de
mailto:bohner@rose-hulman.edu
mailto:jonathan.bowen@lsbu.ac.uk
mailto:karin@inf.puc-rio.br
mailto:broy@in.tum.de
mailto:burns@cs.york.ac.uk
mailto:tcarrico@cougaarsoftware.com
mailto:casanova@inf.puc-rio.br
mailto:markus.doedt@cs.tu-dortmund.de
mailto:jose@mcs.le.ac.uk
mailto:filieri@elet.polimi.it

xvi Contributors

Barry D. Floyd Orfalea College of Business, California Polytechnic University,
San Luis Obispo, CA, USA, bfloyd@calpoly.edu

Antonio L. Furtado Department of Informatics, PUC-Rio, Rio de Janeiro, RJ,
Brazil, furtado@inf.puc-rio.br

Carlo Ghezzi DeepSE Group @ DEI, Politecnico di Milano, Milan, Italy,
ghezzi@elet.polimi.it

Mike Hinchey Lero—the Irish Software Engineering Research Centre, University
of Limerick, Limerick, Ireland, mike.hinchey@lero.ie

Gerard J. Holzmann Laboratory for Reliable Software, Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA, USA, gholzmann@acm.org

Michael Jackson The Open University, Milton Keynes, UK, jacksonma@acm.org

Mark Lawford McMaster University, Hamilton, ON, Canada,
lawford@mcmaster.ca

Renato Levy Intelligent Automation Inc., Rockville, USA, rlevy@i-a-i.com

José A. F. de Macêdo Department of Computing, Federal University of Ceará,
Fortaleza, CE, Brazil, jose.macedo@lia.ufc.br

Tom Maibaum McMaster University, Hamilton, ON, Canada, tom@maibaum.org

Tiziana Margaria Chair Service and Software Engineering, University of Pots-
dam, Potsdam, Germany, margaria@cs.uni-potsdam.de

Andrew Milluzzi Rose-Hulman Institute of Technology, Terre Haute, USA,
milluzaj@rose-hulman.edu

Raffaela Mirandola DeepSE Group @ DEI, Politecnico di Milano, Milan, Italy,
mirandola@elet.polimi.it

Joaquin Peña University of Seville, Seville, Spain, joaquinp@us.es

James L. Rash NASA Goddard Space Flight Center, Emeritus Greenbelt, MD,
USA, james.l.rash@nasa.gov

Ramya Ravichandar CISCO Inc., San Jose, CA, USA, ramyar@vt.edu

Christopher A. Rouff Lockheed Martin Advanced Technology Laboratories, Ar-
lington, VA, USA, christopher.rouff@lmco.com

Antonio Ruiz-Cortés University of Seville, Seville, Spain, aruiz@us.es

Norman F. Schneidewind Department of Information Science, Graduate School of
Operational and Information Sciences, Monterey, CA, USA, ieeelife@yahoo.com

Bernhard Steffen Chair Programming Systems, TU Dortmund, Dortmund, Ger-
many, steffen@cs.tu-dortmund.de

Roy Sterritt School of Computing and Mathematics, University of Ulster, New-
townabbey, Northern Ireland, r.sterritt@ulster.ac.uk

mailto:bfloyd@calpoly.edu
mailto:furtado@inf.puc-rio.br
mailto:ghezzi@elet.polimi.it
mailto:mike.hinchey@lero.ie
mailto:gholzmann@acm.org
mailto:jacksonma@acm.org
mailto:lawford@mcmaster.ca
mailto:rlevy@i-a-i.com
mailto:jose.macedo@lia.ufc.br
mailto:tom@maibaum.org
mailto:margaria@cs.uni-potsdam.de
mailto:milluzaj@rose-hulman.edu
mailto:mirandola@elet.polimi.it
mailto:joaquinp@us.es
mailto:james.l.rash@nasa.gov
mailto:ramyar@vt.edu
mailto:christopher.rouff@lmco.com
mailto:aruiz@us.es
mailto:ieeelife@yahoo.com
mailto:steffen@cs.tu-dortmund.de
mailto:r.sterritt@ulster.ac.uk

Contributors xvii

Giordano Tamburrelli DeepSE Group @ DEI, Politecnico di Milano, Milan, Italy,
tamburrelli@elet.polimi.it

Walter F. Truszkowski NASA Goddard Space Flight Center, Emeritus Greenbelt,
MD, USA, walter.f.truszkowski@nasa.gov

Vânia M.P. Vidal Department of Computing, Federal University of Ceará, Fort-
aleza, CE, Brazil, vvidal@lia.ufc.br

Alan Wassyng McMaster University, Hamilton, ON, Canada,
wassyng@mcmaster.ca

Kun Wei Department of Computer Science, University of York, York, UK,
kun@cs.york.ac.uk

Jim Woodcock Department of Computer Science, University of York, York, UK,
jim@cs.york.ac.uk

mailto:tamburrelli@elet.polimi.it
mailto:walter.f.truszkowski@nasa.gov
mailto:vvidal@lia.ufc.br
mailto:wassyng@mcmaster.ca
mailto:kun@cs.york.ac.uk
mailto:jim@cs.york.ac.uk

Abbreviations

ABAP Advanced Business Application Programming
ACM Association for Computing Machinery
ADL Architecture Description Language
ADT Abstract Data Type
AE Autonomic Element
ANS Autonomic Nervous System
ANTS Autonomous Nano-Technology Swarm
AOP Aspect Oriented Programming
AOSE Agent-Oriented Software Engineering
APEX Adaptive Planning and Execution
API Application Programming Interface
AUML Agent UML
BAPI Business Application Programming Interface
BB Black-Box
BOR Business Object Repository
BP Business Process
BPEL Business Process Execution Language
BPM Business Process Management
BPMS Business Process Management System
CACM Communications of the ACM
CAS Complex Adaptive System
CASE Computer-Aided Software Engineering
CBD Component-Based Development
CCF Common Cause Failure
CCFDB Common-Cause Failure Data Base
CE Capabilities Engineering
CMDA Cougaar Model-Driven Architecture
COM Computation Independent Model
COP Common Operating Picture
CORBA Common Object Request Broker Architecture
COTS Component Off The Shelf

xix

xx Abbreviations

CPR Core Plan Representation
CSP Communicating Sequential Processes
CTMCs Continuous Time Markov Chains
DARPA Defense Advanced Research Projects Agency
DoD Department of Defense
DL Description Logic
DSL Domain Specific Language
DST Decision Support Tool
DTMCs Discrete Time Markov Chains
EDAM EMBRACE Ontology for Data and Methods
EMBRACE European Model for Bioinformatics Research and Community

Education
EMBOSS European Molecular Biology Open Software Suite
EMF Encore Modelling Language
ER Entity-Relationship
ERP Enterprise Resource Planning
FAST Formal Approaches to Swarm Technologies
FD Function Decomposition
FLG Feature Level Graph
FDR Failures-Divergences Refinement
FIFO First In First Out
FPGA Field-Programmable Gate Array
GB Grey-Box
GCAM General Cougaar Application Model
GCME Graphical Cougaar Model Editor
GDAM General Domain Application Model
GEF Graphical Editing Framework
GPAC General-Purpose Autonomic Computing
GRASP General Responsibility Assignment Software Patterns
GUI Graphical User Interface
HITL Human In The Loop
HOL Higher Order Logic
HPRC High-Performance Reconfigurable Computing
HRSM Hubble Robotic Servicing Mission
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property
IT Information Technology
IWIM Idealised Worked Idealised Manager
jABC Java Application Building Centre
JC3IEDM Joint Consultation, Command and Control Information Exchange

Data Model
JDBC Java Database Connectivity
JDL Joint Directors of Laboratories
JET Java Emitter

Abbreviations xxi

jETI Java Electronic Tool Integration Platform
JVM Java Virtual Machine
JMS Java Message Service
KLOC Thousand (k) Lines of Code
LARA Lunar Base Activities
LOC Lines of Code
LOGOS Lights-Out Ground Operating System
MAPE Monitor-Analyse-Plan-Execute
MAS Multi-Agent System
MBE Model-Based Engineering
MBEF-HPRC Model-Based Engineering Framework for High-Performance

Reconfigurable Computing
MBSE Model-Based Software Engineering
MDA Model-Driven Architecture
MDD Model-Driven Development
MDPs Markov Decision Processes
MDSD Model-Driven Software Development
MGS Mars Global Surveyor
MIL Module Interconnection Language
MIP Multilateral Interoperablity Programme
MLM Military Logistics Model
MPS Meta Programming System
MOF Meta Object Facility
MTBF Mean-Time Between Failure
NASA National Aeronautics and Space Administration
NATO North Atlantic Treaty Organisation
NOS Network Object Space
OASIS Organisation for the Advancement of Structured Information

Standards
OCL Object Constraint Language
OMG Object Management Group
OO Object-Oriented
OOP Object-Oriented Programming
OOram Object Oriented Role Analysis and Modelling
OSMA NASA Office of Systems and Mission Assurance
OTA One-Thing Approach
OWL Web Ontology Language
PAM Prospecting Asteroid Mission
PARSY Performance Aware Reconfiguration of software SYstems
PCTL Probabilistic Computation Tree Logic
PDA Personal Digital Assistant
PIM Platform Independent Model
PLD Programmable Logic Device
PSM Platform Specific Model
PTCTL Probabilistic Timed Computation Tree Logic

xxii Abbreviations

PVS Prototype Verification System
QNs Queueing Networks
QoS Quality of Service
QSAR Quantitative Structure Activity Relationships
R2D2C Requirements-to-Design-to-Code
RC Reconfigurable Computing
RFC Remote Function Call
RMI Remote Method Invocation
RPC Remote Procedure Call
RSL RAISE Specification Language
SASSY Self-Architecting Software SYstems
SBS Service-Based Systems
SC Situation Construct
SCA Service Component Architecture
SCADA Supervisory Control and Data Acquisition
SDE Shared Data Environment
SDR Software-Defined Radio
SIB Service-Independent Building block
SLA Service Level Agreement
SLG Service Level Graph
SNA Social Networking Application
SNS Semantic Network Space
SOAP Simple Object Access Protocol
SOA Service-Oriented Architecture
SOC Service-Oriented Computing
SOS Situational Object Space
SRF Situational Reasoning Framework
SRML SENSORIA Reference Modelling Language
SSA Shared Situational Awareness
SWS Semantic Web Service
TA TeleAssistence
TCO Total Cost of Ownership
TCTL Timed Computation Tree Logic
TCSPM Timed CSP with the Miracle
UID Unique Object Identifier
UML Unified Modelling Language
URL Uniform Resource Locator
UTP Unifying Theories of Programming
VDM Vienna Development Method
VHDL VHSIC hardware description language
VLSI Very-Large-Scale Integration
W3C World Wide Web Consortium
WB White-Box
WBS White-Box Shared
WSDL Web Service Definition Language

Abbreviations xxiii

xADL Extensible Architecture Description Language
XMDD Extreme Model-Driven Development
XMI XML Metadata Interchange
XML Extensible Markup Language
XP Extreme Programming
XPDL XML Process Definition Language
3GL Third Generation Languages

	Conquering Complexity
	Foreword
	Preface
	Contents
	Contributors
	Abbreviations

