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Today, “complexity” is a word that is much
in fashion. We have learned very well that
many of the systems that we are trying to deal
with in our contemporary science and
engineering are very complex indeed. They
are so complex that it is not obvious that the
powerful tricks and procedures that served us
for four centuries or more in the development
of modern science and engineering will
enable us to understand and deal with
them. . .
. . . We are learning that we need a science of
complex systems and we are beginning to
develop it.
– Herbert A. Simon



Foreword

The year 2012—of publication of this book Conquering Complexity—is particu-
larly distinguished by being the centenary year of Alan Turing, whose theoretical
analysis of the notion of “computing machine”, together with his wartime work in
deciphering German codes, has had a huge impact on the enormous development of
electronic computers, and the consequent impact that these devices have had on our
lives, particularly with regard to science and technology. It is now possible to model
extremely complex systems, whether they be naturally occurring physical processes
or the predicted behaviour of human-constructed machinery. The complexity that
can now be handled by today’s electronic computers has completely transformed
our understanding of many different kinds of physical behaviour, such behaviour
being taken to act in accordance with the known physical laws. The extreme pre-
cision of these laws, as ascertained in numerous delicate experiments, allows us to
have very considerable confidence in the results of these computations, and when
the computations are done correctly, we may have a justified trust in the expectation
of agreement between the computationally predicted outcomes and the details of ob-
served behaviour. Conversely, such agreement between calculated predictions and
actual physical behaviour reflects back as further confirmation on the very accuracy
of the laws that are employed in the calculations.

However, the very possibility of reliably performing calculations of the extreme
complication that is frequently required raises numerous new issues. Many of these
issues would not have been evident before the advent of modern electronic computer
technology, which has rendered it possible—and indeed commonplace—to enact
the vast computations that are frequently needed. Whereas, our modern computers
can be trusted to perform the needed calculations with enormous speed and accu-
racy, the machines themselves have no understanding of what they are doing nor of
the purposes to which the results of these computations are to be put. It is we who
must supply this understanding. Our particular choices of the actual computations
that are to be performed need to be correct ones that do actually reflect the physical
processes that are intended to be simulated. In addition, there are frequently many
different ways of achieving the same ends, and insight and subtle judgements need
to be employed in the decisions as to which procedures are the most effective to be
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deployed. In my own extremely limited experience, in early 1956, when computer
technology was still in its infancy, I obtained some direct experience of the vast
simplification, even then, that could sometimes be achieved by the reformulation of
a particular calculation into a subtly different one. How much greater is the poten-
tial, now, to improve the speed, accuracy—and indeed the very feasibility—of an
intended simulation. The very enormity of the complexity of so many currently re-
quired computations vastly increases the role of such general considerations, these
often leading to reliable computations that might have otherwise appeared not to
be feasible, and frequently providing a much better understanding of what can in-
deed be achieved in practise. Many such matters are considered in this book, which
address the issue of computational complexity from a great many different points
of view. It is fascinating to see the variety of different types of argument that are
here brought to bear on the issues involved, which so frequently indeed provide the
taming of complexity in its multifarious forms.

Roger Penrose



Preface

Software has long been perceived as complex, at least within Software Engineering
circles. We have been living in a recognised state of crisis since the first NATO
Software Engineering conference in 1968. Time and again we have been proven
unable to engineer software as easily/cheaply/safely as we imagined. Cost overruns
and expensive failures are the norm.

The problem is fundamentally one of complexity—translating a problem spec-
ification into a form that can be solved by a computer is a complex undertaking.
Any problem, no matter how well specified, will contain a baseline of intrinsic
complexity—otherwise it is not much of a problem. Additional complexities ac-
crue as a solution to the problem is implemented. As these increase, the complexity
of the problem (and solution) quickly surpasses the ability of a single human to fully
comprehend it. As team members are added new complexities will inevitably arise.

Software is fundamentally complex because it must be precise; errors will be
ruthlessly punished by the computer. Problems that appear to be specified quite eas-
ily in plain language become far more complex when written in a more formal no-
tation, such as computer code. Comparisons with other engineering disciplines are
deceptive. One cannot easily increase the factor of safety of software in the same
way that one could in building a steel structure, for example. Software is typically
built assuming perfection, often without adequate safety nets in case the unthinkable
happens. In such circumstances it should not be surprising to find out that (seem-
ingly) minor errors have the potential to cause entire software systems to collapse.
A worrying consideration is that the addition of additional safety or fault protection
components to a system will also increase the system’s overall complexity, poten-
tially making the system less safe.

Our goal in this book is to uncover techniques that will aid in overcoming com-
plexity and enable us to produce reliable, dependable computer systems that will
operate as intended, and yet are produced on-time, in budget, and are evolvable,
both over time and at run time. We hope that the contributions in this book will aid
in understanding the nature of software complexity and provide guidance for the
control or avoidance of complexity in the engineering of complex software systems.
The book is organised into three parts: Part I (Chaps. 1 and 2) addresses the sources
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and types of complexity; Part II (Chaps. 3 to 9) addresses areas of significance in
dealing with complexity; Part III (Chaps. 10 to 17) identifies particular application
areas and means of controlling complexity in those areas.

Part I of the book (Chaps. 1 and 2) drill down into the question of how to recog-
nise and handle complexity. In tackling complexity two main tools are highlighted:
abstraction and decomposition/composition. Throughout this book we see these
tools reused, in different ways, to tackle the problem of Controlling Complexity.

In Chap. 1 José Luiz Fiadeiro discusses the nature of complexity and highlights
the fact that software engineering seems to have been in a permanent state of crisis,
a crisis might better be described as one of complexity. The difficulty we have in
conquering it is that the nature of complexity itself is always changing. His senti-
ment that we cannot hope to do more than “shift [. . . ] complexity to a place where
it can be managed more effectively” is echoed throughout this book.

In Chap. 2 Michael Jackson outlines a number of different ways of decompos-
ing system behaviour, based on the system’s constituents, on machine events, on
requirement events, use cases, or software modules. He highlights that although
each offers advantages in different contexts, they are in themselves not adequate to
master behavioural complexity. In addition he highlights the potential for oversim-
plification. If we decompose and isolate parts of the system and take into account
only each part’s intrinsic complexities we can easily miss some interactions between
the systems, leading to potentially surprising system behaviour.

Part II of the book outlines different approaches to managing or controlling com-
plexity. Chapters 3 and 4 discuss the need to tackle complexity in safety-critical
systems, arguing that only by simplifying software can it be proven safe to use.
These chapters argue for redundancy and separation of control and safety systems
respectively.

Gerard Holzmann addresses the question of producing defect-free code in
Chap. 3. He argues that rather than focusing on eliminating component failure by
producing perfect systems, we should aim to minimise the possibility of system
failure by focusing on the production of fallback redundant systems that are much
simpler—simple enough to be verifiably correct. In Chap. 4, Wassyng et al. argue
that rather than seeking to tame complexity we should focus our efforts on avoiding
it altogether whenever reliability is paramount. The authors agree with Holzmann
in that simpler systems are more easy to prove safe, but rather than using redundant
systems to take control in the case of component failure they argue for the complete
separation of systems that must be correct (in this case safety systems) from control
systems.

In Chap. 5, Norman Schneidewind shows how it is possible to analyse the trade-
offs in a system between complexity, reliability, maintainability, and availability
prior to implementation, which may reduce the uncertainty and highlight potential
dangers in software evolution. In Chap. 6, Bohner et al argue that change tolerance
must be built into the software and that accepting some complexity today to decrease
the long term complexity that creeps in due to change is warranted.

Chapters 7 to 9 discuss autonomous, agent-based, and swarm-like software sys-
tems. The complexity that arises out of these systems comes from the interactions
between the system’s component actors or agents.
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In Chap. 7 Hinchey et al. point out that new classes of systems are introducing
new complexities, heretofore unseen in (mainstream) software engineering. They
describe the complexities that arise when autonomous and autonomic character-
istics are built into software, which are compounded when agents are enabled to
interact with one another and self-organise. In Chap. 8 Mike Hinchey and Roy Ster-
ritt discuss the techniques that have emerged from taking inspiration from biological
systems. The autonomic nervous system has inspired approaches in autonomic com-
puting, especially in self-managing, self-healing, and other self-* behaviours. They
consider mechanisms that enable social insects (especially ants) to tackle problems
as a colony (or “swarm” in the more general sense) and show how these can be
applied to complex tasks. Peña et al. give a set of guidelines to show how com-
plexity derived from interactions in agent-oriented software can be managed in
Chap. 9. They use the example of the Ant Colony to model how complex goals
can be achieved using small numbers of simple actors and their interactions with
each other.

Part III of the book (Chaps. 10 to 17) discusses the control of complexity in dif-
ferent application areas. In Chap. 10, Tiziana Margaria and Bernhard Steffen argue
that classical software development is no longer adequate for the bulk of application
programming. Their goal is to manage the division of labour in order to minimise
the complexity that is “felt” by each stakeholder.

The use of formal methods will always have a role when correct functioning of
the software is critical. In Chap. 11, Jonathan Bowen and Mike Hinchey examine the
attitudes towards formal methods in an attempt to answer the question as to why the
software engineering community is not willing to either abandon or embrace formal
methods. In Chap. 12 Filieri et al. focus on how to manage design-time uncertainty
and run-time changes and how to verify that the software evolves dynamically with-
out disrupting the reliability or performance of applications. In Chap. 13, Wei et
al. present a timebands model that can explicitly recognise a finite set of distinct
time bands in which temporal properties and associated behaviours are described.
They demonstrate how significantly their model contributes to describing complex
real-time systems with multiple time scales. In Chap. 14 Manfred Broy introduces
a comprehensive theory for describing multifunctional software-intensive systems
in terms of their interfaces, architectures and states. This supports the development
of distributed systems with multifunctional behaviours and provides a number of
structuring concepts for engineering larger, more complex systems.

In Chap. 15, John Anderson and Todd Carrico describe the Distributed Intelligent
Agent Framework, which defines the essential elements of an agent-based system
and its development/execution environment. This framework is useful for tackling
the complexities of systems that consist of a large network of simple components
without central control. Margaria et al. discuss the difficulties in dealing with mono-
lithic ERP systems in Chap. 16. As the business needs of customers change the
ERP system they use must change to respond to those needs. The requirements of
flexibility and customisability introduce significant complexities, which much be
overcome if the ERP providers are to remain competitive. In Chap. 17 Casanova et
al. discuss the problem of matching database schemas. They introduce procedures
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to test strict satisfiability and decide logical implication for extralite schemas with
role hierarchies. These are sufficiently expressive to encode commonly-used Entity-
Relationship model and UML constructs.

We would like to thank all authors for the work they put into their contributions.
We would like to thank Springer for agreeing to publish this work and in particular
Beverley Ford, for her support and encouragement. We would like to thank all of
our friends and colleagues in Lero.1

Mike Hinchey
Lorcan Coyle

Limerick, Ireland

1This work was supported, in part, by Science Foundation Ireland grant 03/CE2/I303_1 to Lero–
the Irish Software Engineering Research Centre (www.lero.ie).

http://www.lero.ie
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