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Abstract Ensemble learning techniques generate multiple classifiercalled base
classifiers, whose combined classification results are useter to increase the
overall classification accuracy. In most ensemble classiffee base classifiers are
based on the Top Down Induction of Decision Trees (TDIDT)rapph. However,
an alternative approach for the induction of rule basedsilass is the Prism fam-
ily of algorithms. Prism algorithms produce modular cléisation rules that do not
necessarily fit into a decision tree structure. Prism di@ssion rulesets achieve a
comparable and sometimes higher classification accuraoypared with decision
tree classifiers, if the data is noisy and large. Yet Pristhstffers from overfit-
ting on noisy and large datasets. In practice ensembleitpobsitend to reduce the
overfitting, however there exists no ensemble learner fatutay classification rule
inducers such as the Prism family of algorithms. This ata#scribes the first de-
velopment of an ensemble learner based on the Prism faméigofithms in order
to enhance Prism'’s classification accuracy by reducingfibivieg.

1 Introduction

One of the most well-known ensemble learning methods is #melBm Forests (RF)
classifier from Breiman [7]. RF is inspired by the Random Bexi Forests (RDF)

approach from Ho [15]. Ho argues that traditional treesrof#nnot be grown over a
certain level of complexity without risking a loss of geneyation caused by overfit-
ting on the training data. Ho proposes inducing multiplesran randomly selected
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subsets of the feature space. He claims that the combingsifatation willimprove,
as the individual trees will generalise better on the cfasdion for their subset of
the feature space. Ho evaluates his claims empirically. Rkes use of the basic
RDF approach by combining it with Breiman’s baggiri§potstrapaggegaing)
method [6]. Bagging is intended to improve a classifier's#itsg and classification
accuracy. A classifier is unstable if a small change in thiaitrg set causes major
variations in the classification.

Research on ensemble learning technologies for clasgificat order to over-
come overfitting is still ongoing. For example [13] generatsembles of hetero-
geneous classifiers using stacking. [11] proposed a framkefwo generating hun-
dreds of thousands of classifiers in parallel in a distrib@evironment using small
subsamples of the dataset. Chan and Stolfo’s [9, 10] Metarlieg framework par-
titions the data into subsamples that fit into the memory ahgle machine and
developed a classifier in each subset separately. Thes#ielasare then combined
using various algorithms in order to create a final classifibis can easily be run
in parallel using the independent multi-sample mining apph [19]. A recently
developed prototype of ensemble learners, based on Hogffitees [17] and in-
cremental Naive Bayes, for the classification of datasteeinan ad hoc network
of mobile phones is discussed here [27, 26]. The overall mhéteng framework is
called ‘Pocket Data Mining’ [30]. Pocket Data Mining emptoweighted major-
ity voting in order to combine the different classifiers icdd on different mobile
phones. This work uses the terms ‘ensemble learner’ anéreble classifier’ inter-
changeably, referring to ensemble learners for classiicainless stated otherwise.

There are two general approaches to the induction of cleasdn rules, the ‘di-
vide and conquer’ approach, also known as TDIDT [20, 21] &ed'$eparate and
conquer’ approach [31]. ‘Divide and conquer’ induces dfacsgtion rules in the in-
termediate representation of a decision tree. ‘Separateanquer’ induces a set
of IF.THEN rules rather than a decision tree. ‘Separate and conquebedraced
back to Michalski’'s AQ system in the 1960s [16]. However thestmotable devel-
opment using the ‘separate and conquer’ approach is the Raiwily of algorithms
[8, 3, 4]. It produces modular rules that do not necessatilptib a decision tree. It
produces a comparable classification accuracy to and in sases outperforms de-
cision trees, especially in noisy domains. Recent devetspison the Prism family
of algorithms includes frameworks for parallelising Prialgorithms for rule induc-
tion on massive datasets [23, 25, 24] and rule pruning mstirodrder to reduce
overfitting [28, 4]. In general Prism algorithms have beemwaito be less vulnera-
ble to overfitting compared with decision tree classifiespeeially if there is noise
in the data and missing values [3]. Yet most ensemble legapproaches are either
based on decision trees or a heterogeneous setup of basaiasSome ensemble
approaches consider heterogeneous classifiers, such ad ®eating [9, 10], yet
in practice their application mostly makes use of algortthrat follow the ‘divide
and conquer’ approach.

The fact that Prism classifiers tend to overfit less compaiidid decision trees
motivates the development of ensemble learners based sm Rfgorithms. This
paper presents the first attempt to build a Prism based emsédeatoner inspired
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from RF calledRandom Prism in order to improve Prism’s classification accuracy
further. A prototype implementation is evaluated empihca his paper is struc-
tured as follows: Section 2 introduces the Prism family gbaithms in comparison
with decision tree classifiers and describes the newly dpeelRandom Prism en-
semble learner; Section 3 evaluates Random Prism on sel&taakts and compares
it with a standalone Prism classifier. Section 4 highliglot®ie ongoing and future
work, notably some variations of the Random Prism approadtagparallel version
of Random Prism. Section 5 concludes the paper with a briehsary and some
concluding remarks.

2 Random Prism

This section describes our Random Prism ensemble leatrstlintroduces the
Prism Family of algorithms in Section 2.1 and compares thétm thie ‘divide and

conquer’ approach used by RF. Section 2.2 then highligletfRéndom Prism ap-
proach based on the RF ensemble learner.

2.1 The Prism Family of Algorithms

As mentioned in Section 1, the representation of classificatiles differs between
the ‘divide and conquer’ and ‘separate and conquer’ appremdrule sets generated
by the ‘divide and conquer’ approach are in the form of decisiees whereas rules
generated by the ‘separate and conquer’ approach are moklfiddular rules do
not necessarily fit into a decision tree and normally do nbe fule representation
of decision trees is the main drawback of the ‘divide and cemgapproach, for
example rules such as:

IFA=1ANDB=1THEN class= x
IFC=1AND D = 1THENCclass= x

cannot be represented in a tree structure as they have nlouttin com-
mon. Forcing these rules into a tree will require the intiithn of additional
rule terms that are logically redundant, and thus resultninegessarily large and
confusing trees [8]. This is also known as the replicatedrsebproblem [31].
Cendrowska illustrates the replicated subtree using tleeeiwample rules above
in [8]. Cendrowska assumes that the attributes in the twesrabove comprise three
possible values and both rules predict ctasal remaining classes being labellgd
The simplest tree that can express the two rules is showrgur&il. The total set
of rules that predict classencoded in the tree is:

IFA=1AND B=1THEN Class= x

IFA=1ANDB=2AND C=1AND D = 1THEN Class = x
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IFA=1ANDB=3AND C=1AND D = 1THEN Class= x
IFA=2AND C=1AND D = 1THEN Class = x
IFA=3AND C=1AND D = 1THEN Class = x

Fig. 1 Cendrowska’s replicated subtree example.

Cendrowska argues that situations such as this which caaeseto be needlessly
complex make the tree representation unsuitable for esgstéms and may require
unnecessary expensive tests by the user [8].

‘Separate and conquer’ algorithms avoid the replicatedreatproblem by in-
ducing directly sets of 'modular’ rules, avoiding unne@a#g redundant rule terms
that are induced just for the representation in a tree stracThe basic ‘separate
and conquer’ approach can be described as follows, whesgdtement

Rul e_set rules = new Rule_set();

creates a new rule set:

Rul e_Set rules = new Rule_set();

While Stopping Criterion not satisfied{
Rul e = Learn_Rul e;
Renove all data instances covered from Rul g;
rul es. add(rul e);

}

The Learn_Rule procedure generates the best rule for the current subskeof t
training data where best is defined by a particular heutisitmay vary from algo-
rithm to algorithm. The stopping criterion is also depertaenthe algorithm used.
After inducing a rule, the rule is added to the rule set, atances that are covered
by the rule are deleted and a new rule is induced on the rengdirdining instances.

In Prism each rule is generated for a particular Target GI&€3. The heuristic
Prism uses in order to specialise a rule is the probabilitih which the rule covers
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the TC in the current subset of the training data. The stappiiterion is fulfilled
as soon as there are no training instances left that areiatbwith the TC.

Cendrowska’s original Prism algorithm selects one clagk@3 C at the begin-
ning and induces all rules for that class. It then selectsnthé class as TC and
resets the whole training data to its original size and ieduall rules for the next
TC. This is repeated until all classes have been selectedCad/driations exist
such as PrismTC [5] and PrismTCS (Target Class Smalles} fifstBoth select
the TC anew after each rule induced. PrismTC always uses #jarity class and
PrismTCS uses the minority class. Both variations intredac order in which the
rules are induced, where there is none in the basic Prisnoappr However un-
published experiments by the current authors show thatrb@igiive accuracy of
PrismTC cannot compete with that of Prism and PrismTCSnHrS does not re-
set the dataset to its original size and thus is faster thesmPtt produces a high
classification accuracy and also sets an order in which fles sthould be applied to
the test set.

The basic PrismTCS algorithm is outlined below whageés a possible attribute
value pair and is the training dataset. The statement

Rul e_set rules = new Rule_set();

creates a new rule set which is a list of rules and the line
Rule rule = new Rul e(i);

creates a new rule with clagss classification. The statement
rul e. addTer m( Ax) ;

will append a rule term to the rule and
rul es.add(rul e);

adds the finished rule to the rule set.

D =D
Rul e_set rules = new Rule_set();
Step 1: Find class i that has the fewest instances in the training
set;
Rule rule = new Rul e(i);
Step 2: Calculate for each Ax p(class = i| Ax);

Step 3: Select the Ax with the maxi mum p(class = i| Ax);
rul e. addTer n{ Ax) ;
Delete all instances in D that do not cover rule;

Step 4: Repeat 2 to 3 for D until D only contains instances
of classification i.
Step 5: rules.add(rule);
Create a new D that conprises all instances of D except
those that are covered by all rules induced so far;
Step 6: IF (D is not enpty){
repeat steps 1 to 6;
}

We will concentrate here on the more popular PrismTCS agprbat all tech-
niques and methods outlined here can be applied to any merhither Prism family.
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2.2 Random Prism Classifier

The Random Prism classifier is based on the principles of therl8emble learner,
hence this section first introduces the Random Forestsiféadsriefly and then
discusses the new Random Prism ensemble classifier.

As mentioned in Section 1 RF are inspired by the RDF approach Ho [15].
RDF induces multiple trees in randomly selected subsetbefdature space in
order to make the trees generalise better. RF uses RDF'@agpplus bagging
[6] in order to improve the classifiers’ accuracy and stabiBagging means that a
sample with replacement is taken for the induction of eagé. tr

The basic principle of RF is that it grows a large number ofiglen trees (a
forest) on samples produced by bagging, using a randomtsofttbe feature space
for the evaluation of splits at each node in each tree. Itlsea new data instance to
be classified, then each tree is used to produce a predictitine new data instance.
RF then labels the new data instance with the class thatazhtbe majority of the
‘votes’.

The Random Prism ensemble learner’s ingredients are théesR&ttom feature
subset selection, RF’s bagging and PrismTCS as base @assifi

Using Prism as base classifier is motivated by the fact thatrHs less vulnera-
ble to clashes, missing values and noise in the dataset aharal tends to overfit
less compared with decision trees [3] which are used in RFRIDE. In particu-
lar PrismTCS is used, as PrismTCS is also computationallerefficient than the
original Prism while in some cases producing a better acgy2®]. A good compu-
tational efficiency is needed as ensemble classifiers indwudgple classifiers and
thus place a high computational demand on CPU time. In théegbof Random
Prism, the terms PrismTCS and Prism may be used interchhlygazahis paper,
both referring to PrismTCS unless stated otherwise.

Given a training datasd®, using bagging a samplg; if i is theith classifier
is created, using random sampling with replacement [6]s Tineans that the data
samples may overlap, as Iy a data instance may occur more than once or may
not be included at all. From eadh a classifieiC; is induced. In order to classify
a new data instance, ea€h predicts the class, and the bagged classifier counts
the votes and labels the data instance with the class thisvachthe majority of the
votes. An ensemble classifier created using bagging oft@eaes a higher accuracy
compared with a single classifier induced on the whole tngiiataseD and if it
achieves a worse accuracy it is often still close to the simtgissifier's accuracy
[14]. The reason for the increased accuracy of bagged fiassiies in the fact
that the composite classifier model reduces the variandeeahtlividual classifiers
[14]. The most commonly used bootstrap model for bagging take a sample of
sizen if nis the number of instances. This will result in samples tloattain on
average 63.2% of the original data instances. The fact thggéd classifiers can
achieve a higher accuracy than a single classifier inducatdewhole dataseb,
as mentioned above, motivates the use of bagging in the Rafdism ensemble
classifier proposed here.
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The RDF approach by Ho [15] induces multiple trees on rangiasllected sub-
sets of the feature space. Again a composite model is gedeaaid it has been
shown in [15] that they generalise better than a single trdaded on the complete
feature space, as the are less prone to overfitting. InspjpedRDF, Breiman’s RF
randomly selects a subset of the feature space for each liadelo tree. Feature
subset selection similar to the one used in RF is incorpdriat&andom Prism as
well, inspired from the fact that random feature subsetcsiele generalises the en-
semble classifier better and thus makes it likely to produbigher classification
accuracy.

The pseudo code below describes the adapted version of REiSrfor the use in
Random Prism based on PrismTCS'’s pseudo code in SectioMa4slthe number
of features irD:

D = random sanple with replacenment of size n fromD,
Rul e_set rules = new Rule_set();

Step 1: Find class i that has the fewest instances in the training

set;

Rule rule = new Rule(i);
Step 2: generate a subset F of the feature space of size mwhere

(M-np0)
Step 3: Calculate for each Ax in F p(class = i| AX);
Step 4: Select the Ax with the maxi num p(class = i| Ax);
rul e. addTer n{ Ax) ;
Delete all instances in D that do not cover rule;

Step 5: Repeat 2 to 4 for D until D only contains instances
of classification i.
Step 6: rules.add(rule);
Create a new D that conprises all instances of D except
those that are covered by all rules induced so far;
Step 7: IF (D is not enpty){
repeat steps 1 to 7,
}

The pseudo code above is essentially PrismTCS incorpgrRidF’'s and RF's
random feature subset selection. For the induction of ealehterm for each rule,
a fresh random subset of the feature space is drawn. Alsouimber of features
considered for each rule term is a random number between Mambe PrismTCS
version above is calleB-PrismTCS, R for denotingRandom sample and feature
selection.

The basic Random Prism approach is outlined in the pseud® lweldw, where
k is the number oR-PrismTCSclassifiers to be induced amndb theith classifier:

doubl e wei ghts[] = new doubl e[ Kk];

Classifiers classifiers = new Cassifier[k];

for(int t =0; t <k; t++){

Build R-RrisnTCS classifier r;

TestData T = instances of D that have not been to induce r;

Apply r to T;
int correct = nunber of by r correctly classified instances in T,
wei ghts[t] = correct/(nunber of instances in T);

Please note that in the Random Prism pseudo code above ya sat of clas-
sifiers is created but also a set of weights. Random Prismriatesmploy a simple
voting system like RF or RDF, but a weighted majority votingtem as in the
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Pocket Data Mining System [27, 26], where each vote is weijaccording to the
corresponding classifier's accuracy on the test data. Agiorexd earlier in this
section, the sampling method used for each classifier sedggiroximately 63.2%
percent of the total number of data instances, which leagpsoaimately 36.8%
of the total number of data instances which are used to edktihe individuaR-
PrismTCSclassifier's accuracy and thus weight. Also the user of thed@e Prism
classifier can define a threshaditi which is the precentage of classifiers to be used
for prediction. Random Prism will always select those dfess with the highest
weights.

For example consider classifiers and weights listed in Table

Table 1 Example data for weighted majority voting
Classifier Weight

A 0.55
B 0.65
C 0.55
D 0.95
E 0.85

Assume that the classifiers in Table 1 are already the bessifitas selected
according to the user’s defined threshold. Further assuatéaha new unseen data
instance classifiers, B andC predict clasy and classifier® andE predict clas.
Random Prism’s weighted majority vote for clags 1.75 (i.e. 065+ 0.65+ 0.55)
and for classX is 1.80 (i.e. 0954 0.85). Thus Random Prism will label the data
instance with clasX.

The R-PrismTCS pseudo code above does not take pruning into consideration,
however a pre-pruning methaHpruning presented in [4] is implemented R
PrismTCS in order further generalise the base classifiers. J-prusibgsed on the
J-measure. According to Smyth and Goodman [22] the averggemation con-
tent of a rule of the formiF Y = y THEN X = x can be quantified by the following
equation:

JXY =y)=py)- j(X;Y=y) (1)

The J-measure is a product of two terms. The first tpy) is the probability
that the antecedent of the rule will occur. It is a measureypblthesis simplicity.
The second terr(X;Y=y) is the ]-measure or cross entropy. It is a measure of the
goodness-of-fit of a rule and is defined by:

)+ (1—p(x|y) - loga( LX) (2)

J(X:Y =y) = p(x] y) - loga( B
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If arule has a high J-value then it tends to have a high prigdiatcuracy as well.
The J-value is used to identify when a further specialigatibthe rule is likely to
resultin a lower predictive accuracy due to overfitting. Dlasic idea is to induce a
rule term and if the rule term would increase the J-value efctlrrent rule then the
rule term is appended. If not then the rule term is discaraeidtiae rule is finished.

3 Evaluation of Random Prism Classification

Random Prism has been evaluated on 15 different dataseeveet from the UCI
data repository [2]. For each dataset a test and a traininigasebeen created us-
ing random sampling without replacement. The training setrises 70% of the
total data instances. Please note that the training setipled again by each R-
PrismTCS base classifier, in order to incorporate baggiegc, as stated in Sec-
tion 2.2 approximately 63.2% of the training data is usedtieractual training and
36.8% is used to calculate the individual classifiers’ wedgihe percentage of the
best classifiers to be used was 10% and the total number ofsSRYPCS classifiers
induced was 100 for each dataset.

Table 2 shows the accuracy achieved using Random Prisnifiedaasd the ac-
curacy achieved using a single PrismTCS classifier.

Table 2 Accuracy of Random Prism compared with PrismTCS.

Dataset Accuracy PrismTCS Accuracy Random Prism
monk1 0.79 1.0
monk3 0.98 0.99
vote 0.94 0.95
genetics 0.70 0.88
contact lenses 0.95 0.91
breast cancer 0.95 0.95
soybean 0.88 0.65
australian credit 0.89 0.92
diabetes 0.75 0.89
Crx 0.83 0.86
segmentation 0.79 0.71
ecoli 0.78 0.78
balance scale 0.72 0.86
car evaluation 0.76 0.71
contraceptive method choice 0.44 0.54

As can be seen in Table 2 Random Prism outperforms PrismT@®irt of 15
cases; in two cases Random Prism achieved the same accsiRdgraTCS; and in
only 4 cases Random Prism’s accuracy was below that of P@$nHowever, look-
ing into these four cases with a lower accuracy, which is &asets ‘car evaluation’,
‘segmentation’, ‘soybean’ and ‘contact lenses’, it candxensthat the accuracies for
‘car evaluation’ and ‘contact lenses’ is still very close farismTCS'’s accuracy. In
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general Random Prism outperforms its single classifiefiaeBrismTCS in most
cases and in the remaining cases its accuracy is often vesg ¢b PrismTCS'’s
accuracy.

4 Ongoing and Future Work

Ongoing and future work comprises a distributed / parabesion of Random Prism
and several variations of the Random Prism approach itself.

4.1 Parallel Random Prism Classifier

Random Prism like any other ensemble learner has a highearton CPU time
than its single classifier version. Table 3 lists the runfimiEPrismTCS and Random
Prism for the evaluation experiments outlined in Sectiohs3ensemble learners are
designed to reduce overfitting, they should be able to bewtedon larger datasets
as well, as the likelihood that noisy data instances areepids higher the larger
the training data is.

Table 3 Runtime of Random Prism on 100 base classifiers comparedangihgle PrismTCS
classifier in milli seconds.

Dataset Runtime PrismTCS Runtime Random Prism
monk1 16 703
monk3 15 640
vote 16 672
genetics 219 26563
contact lenses 16 235
breast cancer 32 1531
soybean 78 5078
australian credit 31 1515
diabetes 16 1953
Crx 31 2734
segmentation 234 15735
ecoli 16 734
balance scale 15 1109
car evaluation 16 3750
contraceptive method choice 32 3563

It can be seen that as expected the runtimes are much largeafmom Prism
than for PrismTCS. This is because Random Prism induces &48@ tassifiers
whereas PrismTCS is only a single classifier. One would exghecruntimes of
Random Prism to be 100 times longer than for PrismTCS as Rafulsm induces
100 base classifiers, however the runtimes are much shoateepected. The rea-
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son for this is that the base classifiers use a subset of thedespace and thus have
fewer features to scan for the induction of each rule term.

Future work will address the problem of scalability of thenBam Prism classi-
fier. Google’s Parallel Learner for Assembling Numerousdanisle Trees (PLANET)
system [18] addresses this problem in the context of detisee based ensemble
classifiers using the MapReduce [12] model of distributedpatation. MapReduce
builds a cluster of computers for a two-phase distributedmatation on large vol-
umes of data. First in the map-phase the dataset is splitlisfoint subsets, which
are assigned together with a user specified map function tken® (mappers) in
the MapReduce cluster. Each mapper then applies the matidnion its data. The
output of the map function (a key-value pair) is then grouped combined by a
second kind of worker, the reducers, using a user definededdmction.

For Random Prism the MapReduce model will be used to dig&ithe induc-
tion of the R-PrismTCS base classifiers using mappers. Tigdual R-PrismTCS
classifiers are then combined using the reducers to the fanradl&n Prism Classi-
fier. Thus the CUP intense part, the induction of many bassifiars can easily be
distributed to a computing cluster of workstations. A opearse implementation
of the MapReduce model called Hadoop is available [1].

4.2 Variations of the Random Prism Ensemble Classifier

There are many possible variations of the Random Prism apprbat may achieve
better classification accuracy, for example differentioes of Prism could be used
as base classifiers. Also it would be possible to use a divamsef all existing
Prism classifiers, such as Prism, PrismTC or PrismTCS. Soisia Blassifiers may
perform well on certain samples, some may perform worses ¢hlarger variety
of Prism classifiers per sample may well increase RandonmRriclassification
accuracy.. Also it is possible to use several Prism and iecisee base classifiers
for each sample.

4.3 Intelligent Voting System

Random Prism’s classification accuracy may be further imgaldy employing a
more intelligent voting system. For example a classifier imaye in general a mod-
erate predictive accuracy. However, concerning its ptexfis for classA, the clas-
sifier may have a very high predictive accuracy. Such caselsl te addressed by
calculating individual weights for each class for this garfar classifier. Implement-
ing more than one weight for a classifier must also be addiésgbe selection of
the best classifiers according to a user defined percentaisilar approach called
‘Combining’ has been used by the Meta-Learning system [P, 10
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5 Conclusions

This work presents the Random Prism ensemble classified loashe Prism family
of algorithms as base classifier. Most ensemble learnetssser] on decision trees
as base classifiers and aim to reduce the overfitting of theshimdrder to achieve
a higher classification accuracy. However alternative lotesssifiers exist, such as
the Prism family of algorithms. It has been discussed thiahiPalgorithms already
perform better on noisy datasets compared with decisi@s tigs they tend to overfit
less. The motivation behind Random Prism is that an ensedfddsifier based on
the Prism family of algorithms may further reduce the oveéniif and thus achieve
a higher classification accuracy compared with single Pdsissifiers.

First the Prism family of algorithms has been introduced @emdpared with de-
cision trees and next the well known Random Forests appitasheen reviewed.
Random Prism is inspired from the Prism family of algorithriee Random De-
cision Forests and Random Forests approaches. Random igsnthe PrismTCS
classifier as base classifier with some modifications call@i&nTCS. The modi-
fications were in order to use the Random Decision Foresifife subset selection
approach. Random Prism also incorporates J-pruning fori®®PCS and Ran-
dom Forests’ bagging approach. Contrary to Random ForedtRandom Decision
Forests, Random Prism uses a weighted majority voting sy8istead of a plain
majority voting system, in order to take the individual clifier's classification ac-
curacy into account. Also Random Prism does not take alsiflass into account,
the user can define the percentage of classifiers to be uselddsification. Random
Prism will select only the classifiers with the highest di&sstion accuracy for the
classification task.

Random Prism has been evaluated on 15 datasets from the p&it@y and
has been shown to produce a better classification accuragases compared with
PrismTCS. In two cases the classification accuracy was the sa for PrismTCS.
In two further cases the classification accuracy was sldiglow PrismTCS'’s ac-
curacy and only in two cases was it much worse than PrismT&Ssracy.

Ongoing work on Random Prism comprises the development dstetaited /
parallel version in order to make Random Prism scale bettéarge datasets. For
this the MapReduce framework is considered in order toidige the induction
of the individual classifiers to different machines in a tduof workstations. This
could be realised using a open source implementation of Mep&e called Hadoop.
Furthermore a variety of Random Prism versions are plarcwdprising different
Prism classifiers as base classifiers or even hybrid ensdediteers comprising
different versions of Prism in one ensemble learner or pbssi mix of decision
tree and Prism classifiers.
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