Towards Large-Scale Multi-Agent Based Rodent
Simulation: The “Mice In A Box” Scenario

E. Agiriga, F. Coenen, J. Hurst, R. Beynon, D. Kowalski

Abstract Some initial research concerning the provision of a Multi-Agent Based
Simulation (MABS) frameworks, to support rodent simulation, is presented. The
issues discussed include the representation of: (i) the environment and the char-
acters that interact with the environment, (ii) the nature of the “intelligence” that
these characters might posses and (iii) the mechanisms whereby characters inter-
act with environments and each other. Two categories of character are identified:
“dumb characters” and “smart characters”, the obvious distinction being that the
first posses no intelligence while the second have at least some sort of reasoning
capability. The focus of the discussion is the provision of a simple “mice in a box”
scenario simulation.

1 Introduction

Multi-Agent Based Simulation (MABS) is concerned with the harnessing of Multi-
Agent System (MAS) technology to enable large scale simulations. The challenge
is the mechanisms and representations required to build frameworks to support the
desired simulation. Using MABS the characters that play a part in the simulation,
and the environment(s) in which they exist, are conceptualised as agents. MABS
has been applied in many domains such as: the monitoring and control of intelligent

E. Agiriga, F. Coenen, D. Kowalski
Dept. of Computer Science, University of Liverpool, Liverpool L69 3BX, UK. e-mail:
{grigs,coenen,darek } @liverpool.ac.uk

R. Beynon
Institute for Biocomplexity, University of Liverpool, Liverpool L69 3BX, UK. e-mail:
R.Beynon@liverpool.ac.uk

J. Hurst
Mammalian Behaviour and Evolution Group, University of Liverpool, Liverpool L69 3BX, UK.
e-mail: G.E.Hurst@liverpool.ac.uk

E. Agiriga, F. Coenen, J. Hurst, R. Beynon, D. Kowalski

buildings [2], transport chains [3], malaria re-emergence in the south of France [6],
and urban population growth [7], to give just a few examples. To the best knowledge
of the authors there is no work on MABS frameworks to study rodent behaviour.
This paper describes some early research regarding issues concerned with the pro-
vision of MABS frameworks for rodent control. The focus of this report is a simple
“mice in a box” scenario. However, the intention is to develop the framework so that
it can be used to support large scale mouse simulations comprising some thousand
agents.

2 The Mouse in a Box Scenario

The scenario at which the discussion presented in this paper is directed is that of a
number of mice contained in a box. The scenario is founded on the sort of exper-
iments conducted by rodent behaviourists who wish to observe the way that mice
interact when placed in a closed environment, namely a 1.22 x 1.22m box!. The
fundamental idea is that one, two or more mice are placed in a box in which they
can “run around”. Mice have an affinity to walls [1] (they are thigmotaxic) and thus
tend to moves along walls (although not exclusively so), thus in the absence of any
obstructions a mouse’s movements tend to be limited to the edges of the box. The
mouse can move round the box in either a clockwise or ant-clockwise direction. It
can also stop or turn around, occasionally it may venture into the space in the middle
of the box. Mice are also interested in exploring their surroundings, the ultimate goal
is the find and maintain an optimum nest location. The stronger Male mice have the
best territory (nest locations). Females look for males with the best territory. Males
mark their territory with scent, the stronger the male the stronger the scent. In the
scenarios considered in this paper only male mice are considered. They are driven
by the following desires:

1. A preference for wall locations as opposed to open space locations (in open space
they are liable to attack by predators).

2. A desire to explore their environment.

3. A desire to avoid locations which feature the scent of other mice (unless that
scent is significantly weaker than the mouse’s own scent).

4. A requirement to avoid other mice that come into close proximity.

The above provides for some motivation for a mouse agent to move (to explore
its locality), although there is no specific goal (reward). Whether the mouse moves
or does not move, how long it moves for (or does not move) and which direction
it should take, is a decision influenced partly by the above desires and partly by a
random element.

! The value 1.22 is a result of the fact that the board from which the boxes are typically fashioned
comes in 2.44 x 1.22m sheets

Towards Large-Scale Multi-Agent Based Rodent Simulation

3 The MABS Framework

The MABS framework is conceptualised in terms of a “cloud” in which a number of
agents exist (Figure 1). From the figure we have three types (classes) of agent: (i) en-
vironment agents, (ii) obstruction agents and (iii) mouse (character) agents. The first
two are characterised as “dumb” agents in that they do not display any intelligence,
while the last has some “thinking” capability. From the figure it can be observed
that we have only one environment agent and any number of obstruction and mouse
agents (in fact we can have zero obstruction agents, but it would not make any sense
to have zero mouse agents). In Figure 1 the arcs indicate communication lines; so
the vision is that mouse agents can communicate with one another and the envi-
ronment agent, while obstruction agents only communicate with the environment.
Inspection of Figure 1 indicates that we also have some: (i) house keeping agents to
facilitate the operation of the framework, (ii) a simulation interface with which an
end user can interact so as to set up individual simulations and (iii) a visualisation
unit that allows the end user to observe simulations. Each of the individual classes
of agent are described in detail in the following three sections.

% //
Simulator
User
[l

bstruction ‘ l Obstruction Obstruction

l / Agent 1

Agent 2 Agent N

PN
)

House Keeping |
Agents

)

Fig. 1 Proposed MABS Framework

4 The Environment Agent

In the context of the proposed MABS framework an environment agent describes
the playing area. In the case of the mouse in a box scenario this will be the box. A
significant research issue with respect to the desired MABS is how best to represent
this playing area. The simplest approach is to represent the playing area as a 2-D
grid. However, this may not scale up for large simulations and features the irritation
that the centroids of the neighbouring squares of a current square are not equidistant
(neighbouring squares on the diagonal are further away than the immediately adja-
cent squares). Alternative representations include hexagonal grids, vector maps and
graphs. However, because of its simplicity, the 2-D grid representation was adopted
with respect to the framework described here.

The environment agent thus represents a playing area comprised of a 2-D grid.
The dimensions of the environment were defined in terms 1cm units. A mouse was

E. Agiriga, F. Coenen, J. Hurst, R. Beynon, D. Kowalski

assumed to measures 7cm in all directions (not true, but the assumption can be
upheld for the purpose of the simple mouse in a box scenario). A mouse was deemed
to move at the rate of one 1cm per 50 mili-seconds. Each grid square (location) was
given a numeric code, a Ground Type Identifier (GTI), indicating the nature of the
square. The currently available codes were in the range |0...4| where: 0 indicated a
“no-go” square, 1 a “wall” square, 2 a “space” square (non-wall square), 3 a “choice
point” and 4 an obstruction (serving to hide the location of other mouse agents). The
mouse cannot move into no-go or obstruction locations.

A mouse agent’s location is described by its centroid; thus a mouse cannot get
closer to a wall or obstruction than 3cm. Therefore all squares within three units
of a wall or obstruction were encoded as no-go squares (0), squares exactly four
units away from a wall or obstruction were labelled as wall squares (1), and squares
more than four units away from walls as space squares (2). Choice points, at their
simplest, are then wall squares that coincide with obtuse corners; where the mouse
might wish to change direction (or stop); or squares where current movement may
proceed in more than one wall direction. The corners of the boxes could also have
been marked as choice points; however the movement of a mouse agent entering
into these locations will be blocked thus, in effect, the location acts as a choice
point without actually being marked as such

The current implementation features six types of environment agent: (i) Box, (ii)
H-box, (iii) O-box, (iv) Four Box, (v) Four Nest and (vi) Maze. The first represents
the simplest scenario. The H-box introduces the concept of obstructions (agents in
their own right) into the box scenario, obstructions can be thought of as “bricks”
placed into the box environment so as to impede a mouse agent’s progress. The
four box scenario comprises four occurrences of the box scenario running simul-
taneously, but described as a single environment with obstructions placed so as to
achieve four boxes. The four nest box was used to simulate the interaction of four
mouse agents. The maze scenario comprises a box scenario with a set of obstruc-
tions arranged to form a “maze”, the objective here was to test whether a mouse
object could find its way through this environment. Every environment agent has
the following fields:

1. widthX, the width of the environment, in terms of grid squares, in the X (East-
West) direction.

2. widthY , the width of the environment, in terms of grid squares, in the Y (North-
South) direction.

3. groundArea, the two dimensional grid describing the locations that make up the
ground area (as described above).

4. gateCoords, one or more gates where characters can enter the environment (start
points).

5. obstructionList, a list of zero, one or more obstruction agents that the environ-
ment needs to know about.

Each location within the environment has a GTI and a record of any scent at
the location, together with the ID for the mouse agent to which the scent sample
belongs. Scent is defined in terms of an integer. Scent typically lasts for 8 to 24

Towards Large-Scale Multi-Agent Based Rodent Simulation

hours depending on the dominance of the mouse. We degrade the mouse scent on
each iteration of the simulation. To speed up the simulation we can enhance the
degradation factor. Currently the maximum scent strength is 255 and it is degraded
by 0.25 on each iteration (a more realistic simulation would require a much lower
degradation factor).

5 The Obstruction Agent

Obstruction agents are simple agents that, as noted above, can be conceptualised as
“bricks” that may be located within an environment. The bricks may be placed in
the box as the scenario progresses, hence obstructions are considered to be agents in
their own right. The H-box environment contains two obstruction agents so that the
environment, when observed in plan view, formed an “H” shape. The O-box con-
tained a single obstruction in the middle of the box so that the environment, when
observed in plan view, resembled an “O” shape. The four box and four nest envi-
ronment also contained two obstruction agents, but arranged to form an intersecting
cross so as to divide the environment into four sub-boxes (Our “bricks” can inter-
sect) and to form four “nest area” respectively. The maze environment had eighteen
obstruction agents arranged in a “maze” formation. Similar to an environment agent,
obstruction agents are dumb agents. The significance of obstruction agents is that
mouse agents cannot “see” behind them; they obstruct a mouse agent’s “field of
view”.

6 The Mouse Agent

A mouse agent is the central character in our mouse simulator. Mouse agents have
the following fields:

1. state, the current state of the mouse agent, either moving, stopped or turning.

2. stateTime, the time spent in the current state.

3. coordX, the mouse agent’s current X location with respect to the environment
agent.

4. coordY, the mouse agent’s current Y location with respect to the environment
agent.

5. direction, the direction the mouse agent is facing, a number in the range of
|0...7| representing N, NE, E, SE, S, SW, W or NW respectively.

6. goalDirection, the direction the agent wishes to face (only applicable when turn-
ing).

7. turnDirection, the “turning direction”, either clockwise or anticlockwise (also
only applicable when turning).

8. scentStrength, the strength of its scent.

E. Agiriga, F. Coenen, J. Hurst, R. Beynon, D. Kowalski
9. visionMap, a disc of locations, with radius v, representing the part of the envi-

ronment which a mouse agent can “see”. Thus a mouse agent’s field of vision is
equivalent to v.

Table 1 Action Table

[Current State |Event |Action |Comments [New State |

stopped None Agent decides to move in|sateTime =0 |moving
direction faced

stopped None Agent decides to move|sateTime =0 |turning
another direction

moving At choice point |Agent decides to move in turning
new direction

moving Obstruction Agent decides to move in turning
new direction

moving Obstruction Agent decides to stop sateTime =0 |stopped

moving None Agent decides to stop sateTime =0 |stopped

turning Completed turn |None moving

Mouse agents are dynamic agents in that they can change their location, direc-
tion, goal direction, turn direction and state. At the same time they are “intelligent”
agents in that they can make decisions about which way to face and where to go.The
operation of our mouse agent is founded on the well established concept of a Finite
State Machine (FSM) [5, 8]. FSM are used to model processes in terms of a finite set
of states. A change from one state to another is called a transition. Transitions are
caused by events or actions (something happening to the agent or the agent doing
something). The possible transitions to a new state, caused by an event or action, are
typically described using a transition table (state diagram or state table). FSMs can
be conceptualised as graphs (state models) where the vertexes represent states and
the edges transitions caused by events or actions. An alternative approach would be
to use the Belief-Desire-Intention (BDI) model [4]. This offers the advantage that
it is supported by existing logic models. However, planning is typically outside the
scope of the model. Given that in our model we think of mouse agents being in a
certain state; and that changes from one state to another with an element of ran-
domness as well as intention (expressed in the form of preferences), a finite state
machine mechanism of operation was adopted.

Decision IM‘ Decision

Completed turn

Probability

Moving Turning

0.0

Decision 0 StateTime 90

Obstruction Obstruction

Fig. 2 State Model Fig. 3 Cosine Probability

The transition table for the mouse object is given in Table 1, which should be
interpreted with respect to the state model presented in Figure 2 . There are seven

Towards Large-Scale Multi-Agent Based Rodent Simulation

different possible transitions. At the start of each simulation the default state for a
mouse object is stopped. Eventually the mouse will decide to move (how this is
determined is discussed below). The mouse object can either move in the direction
it is currently facing or turn to face another direction and then move (how this is
determined is also discussed below).Thus there are two possible state transitions
associated with the stopped state.

There are four possible state transitions associated with the moving state. The
first is when the mouse reaches a choice point. From the above, mice are “wall
huggers”. A choice point is a location where there are more than one possible next
wall locations (as in the case of the maze environment) or the next possible wall
location requires a change in direction. In the first case the mouse may decide to
continue to move in the current direction, in which case there will be no state change;
alternatively the mouse may decide to turn and move in a new direction, thus adopt a
turning state. The second and third movement state changes are where the mouse’s
movements are blocked (for example at the corner of a box environment). In this
case the mouse can decide to stop (adopt a stopped state) or head off in a new
direction (change to a turning state). Note that in the case of a choice point, in the
current implementation, the mouse does not have an option to stop. Finally a mouse
in a moving state may simply decide to stop (how this is determined is discussed
below).

The final state transition in Table 1 occurs when a mouse agent completes a turn,
in which case the mouse will move in the direction it is now facing (i.e. adopt a
moving state). The assumption here is that the only reason for a mouse to turn is to
move in a new direction.

At the start of a simulation the state of the mouse agent is always stopped.
Conceptually the mouse agent can only stay stopped for a finite period of time
T. The probability that the mouse will stay stopped decreases as the the current
stateTime increases (i.e. as the time the mouse agent has spent in its stopped state
increases). When stateTime = T the probability that the mouse will stay stopped is
0.0 (definitely decide to move), when stateTime = 0 the probability is 1.0 (definitely
stay stopped). This probability distribution was modelled using a cosine probability
curve (Figure 3); we could have used a linear probability, or some other alternative,
however the cosine probability has the feature that the likelihood of the mouse agent
staying stopped remains high at low stateTime values, and becomes negligible (re-
ducing to 0.0) as stateTime approaches T. On each simulation iteration, when the
mouse object is stopped, a random number 7 is generated. A state transition will
then occur when:

ey

) (90 X slateTime)
r<cosin| ——M————

T

A similar process was applied where a mouse agent’s state is moving. The as-
sumption is again that the mouse will continue to move for a finite period of time,
but in this case the time period was assumed to be 27". Thus, on each iteration, when
the mouse object is moving a state transition will occur when:

E. Agiriga, F. Coenen, J. Hurst, R. Beynon, D. Kowalski

2

. (90 X stateTime/2>
r<cosin| ————~

T

7 Selecting a Direction of Travel

When a mouse agent reaches a choice point or discovers an obstruction (i.e. it cannot
or may not proceed any further in the current direction) the agent must make a de-
cision. Where an obstruction is reached the mouse has the option to stop or proceed
in a new direction (see Figure 2); the decision whether to stop or not is determined
using identity 2. Where a change of direction is indicated a mouse agent has be-
tween 0 and 8 potential directions it can choose from. A mouse agent cannot enter
no-go locations (GT L = 0); thus, depending on the mouse agent’s current location,
some directions will not be permissible. It is possible for a mouse agents movement
to be entirely blocked by obstructions and/or the presence of other mouse agents. in
which case the mouse will adopt a stopped state. Assuming a mouse agent has one
or more potential directions it can move in each potential direction has a preference
value p of between |0.0...1.0|. The complete set of preference values, P, is then
defined as:

P:{p()vpla"'apn} (3)
such that:

i=n

Y pi=10)
i=0

(where n is the number of available directions/locations).

Preference values are made up of a number of components C = {cy,¢2,...,¢m}s
where m is the number of components. Each component describes some factor of
the decision making process. A specific component j associated with a specific di-
rection i is indicated as ¢;;. Each component has a value of [0.0...1.0|. Such that
Yi—ocij = 1.0 (i.e. the set of values describing a particular component across the set
of potential directions is equivalent to 1.0). Some components may be considered
to have greater significance than others, thus the components are weighted®. The
weighting associated with a component ¢; is indicated by w ;. The preference (p) for
a particular location (i) is then calculated as follows:

.):/ o WiPij
pi= "t
j=0 Wi

®)

In the current simulation implementation four components are considered (m =
4) as follows:

2 Although not a feature of the current implementation, these weighting mat be dynamic (i.e. they
may be changed according to circumstances).

Towards Large-Scale Multi-Agent Based Rodent Simulation

c1 Preference according to GTL (desire for wall locations over space locations).

¢y Preference for locations not recently or never visited (desire to explore).

c3 Preference for avoiding locations where the scent of another mouse is signifi-
cant compared with a mouse agent’s own scent strength (desire to avoid the scent
trails of other mice).

cs Preference for directions that tend to move way from other mouse agents if
within sight (desire to avoid other mice).

Algorithm 1 Determination of preference for wall location component (c1)

L = Set of potential locations
N, = Number of nonspace locations in L
Ny = Number of space locations in L

if Ny = 0 then
pn=1.0/N,
else
Pn = n/Nn
Ps = Ps/Ns
end if

fori=0— |L| do
if L;.groundType = space location then

Li.ci= Ps
else
Li.ci =ng
end if
end for

7.1 Desire for Wall Locations over Space Locations (c)

As noted above mice prefer to move along walls, thus a preference should be given
to directions (next locations) adjacent to walls. A mouse agent will have potentially
N, wall locations and Ny space locations to choose from, where N, and Ny are whole
numbers in the range of |0...8|. Except in the special case where a mouse agent is
blocked in, 1 < (N, + N;) < 8. Of these directions zero, one or more will be space
locations, and one or more will be non-space (wall or choice point) locations. The
overall probability that a non-space location, L,, is selected is given by P,; and the
overall probability that a space location, Ly, is selected by P;, where P, is assumed
to be significantly greater than P. If Ny = 0 then P, = 1.0. Thus the probability
of selecting a specific non space location is given by P,/N,, and the probability
of selecting a specific space location (if such locations exist) is given by P;/N;. The
process of determining the values for the preference component that reflects a desire
for wall locations is given in algorithm 1.

E. Agiriga, F. Coenen, J. Hurst, R. Beynon, D. Kowalski

7.2 Desire to Explore (c;)

The desire to explore is expressed according to where a mouse agent has been
recently, which in turn is expressed according to the scent strength of the mouse
agent’s own scent strength found at neighbouring locations. A mouse agent prefers
locations (directions) where its own scent is not present, or at least weak. Thus the
preference for new locations is expressed as a fraction of the inverse of the mouse
agent’s own scent strength (s;,,) at a given location i. If no scent is present s;,, = 1.0.
The process for calculating the desire to explore preference component is given in
algorithm 2. The ¢, component at a particular candidate location ¢ is given by:

Cp = —a ©)

i=0 Sinv;

In algorithm 2 the factor k is used to reduce the influence of the scent strength at
recently visited locations. The current maximum scent strength is 255, and thus the
k value has been set to 10; if we simply used the inverse of the scent strength the
influence of very recent directions will be negligible, 0.004 (1/255) as compared to
0.039 (10/255).

Algorithm 2 Determination of desire to explore component (c;)

L = Set of potential locations
S = Set of inverses scent strengths
total = 0.0
fori=0— |L| do
if L;.ownScentStrength = 0 then
Si=1
else
Si; = k/L;.ownScentStrength
total = total + S;
end if
end for
fori=0—|L| do
Li.co = Si/total
end for

7.3 Desire to Avoid Scent Trails of other Mice (c3)

The desire to avoid the scent trails of other mice is encapsulated in a similar man-
ner to the desire to explore new locations. We use the inverse of the strength of
the strongest scent belonging to another mouse agent, or 1.0 if there is no such
scent. The process is presented in algorithm 3 where maxScentStrength is the scent
strength associated with the scent strengths at a location belonging to other mice, 0
if there is no such scent strength.The constant K is again used.

Towards Large-Scale Multi-Agent Based Rodent Simulation

7.4 Desire to Avoid other Mice (c4)

A mouse agent knows nothing about the locations of other mice until they appear
on its vision map. In the current simulation the radius of the vision map (v) is set
to 20, however if the location of another mouse agent is obscured by an obstruction
the current mouse agent will not know anything about this other mouse. To ensure
the mouse agents do not actually crash into each other a buffer region of ten units
is place round other mouse agents. Our mouse agents are currently programmed to
avoid other mouse agents that are on its vision map. The values for this preference
component are calculated according to the distance d from each candidate location
to the nearest other mouse (if any). The c4 component at a particular candidate
location g is the distance d from the given candidate location ¢ divided by the sum
of the distances from all of the locations. Thus:

d

——)
Yi—od

Cq4 =

Algorithm 3 Determination of desire to avoid scent trails of other mice (c3)

L = Set of potential locations
S = Set of inverses scent strengths
total = 0.0
fori=0— |L| do
if L;.maxScentStrength = 0 then
Si=1
else
S; = k/L;.maxScentStrength
total = total + S;
end if
end for
fori=0— |L| do
Licz= S,-/total
end for

Algorithm 4 Next Location Algorithm

L = Set of potential locations

Prob=0.0
R = randomNumberGenerator()
Lfinal =-1

fori=0— |L| do
Prob = Prob+ L;.prob
if R < Prob then
Lfina = Li
break
end if
end for
return(Lyinar)

E. Agiriga, F. Coenen, J. Hurst, R. Beynon, D. Kowalski

7.5 Decision making process

From the above each location has four components which are used to calculate
a preference value for the location. Experiments indicated that the weighting that
should be associated with ¢1 and c¢3 should be higher than those associated with the
other components, w; and w3 were therefore set to 2, while the remaining weight-

ings were set to 1. The total preference for a particular location g was this given
b:

2ci+cr4+2c3+ ¢y
Pq = 5
The selection of a new direction was then determined using algorithm 4. The weight-
ings can of course be adjusted as desired by the end user.

®)

7.6 Change of Direction

Having selected a new location it may be necessary to change direction, if so a
state transition from moving to turning will occur. Where a turn is initiated the
mouse agents goalDirection and turnDirection fields must be reset. The value for
the turnDirection field is calculated as follows as shown in algorithm 2 (recall that
directions are specified as integers within the range |0...7|).

Algorithm 5 Direction of Turn Algorithm

dif f = absolute(direction — goalDirection)
if if (goalDirection > direction) then
if diff < 4 then
return(“clockwise’)
else
return(*“anticlockwise”)
end if
else
if diff < 4 then
return(*“anticlockwise”)
else
return(“clockwise’)
end if
end if

8 Operation

The operation of the simulator was controlled by a Loop which iterated every 50
milliseconds. Thus, given that the mouse agent (when in a moving state) moves at a
rate of one grid square per iteration and a grid square measures 1cm, the mouse agent
travels at 1200cm per minute (or 72km per hour). Experiments were conducted us-

Towards Large-Scale Multi-Agent Based Rodent Simulation

ing a number of different environments with a turn rate of 45 degrees per iteration,
T =90, P, =0.95, P, =0.05 and k = 10. The Box experiment was intended to estab-
lish that the mouse agent behaved in a reasonably realistic manner, as confirmed by
domain experts. The H-box was intended to establish that the mouse agent could re-
act to obstructions, the O-box was intended to observe the mouse agent’s behaviour
should it cross the open space between the outer wall of the box and the obstruction,
the Maze experiment was used to evaluate the mouse agent’s ability to negotiate
choice points and the 4-box to demonstrate that mouse agents did not behave in the
same way given four identical spaces. Finally the four nest box simulation was used
observe how a group of mouse agents might interact given a hypothetical situation
that they each might want to guard their own nest site.

& ¢
®
9 ®
e
Fig. 4 Box Simulation Fig. 5 Maze Simulation Fig. 6 4 Box Simulation
@

. SN

Fig. 9 Four Nest Box Simula-
tion (with scent traces)

Fig. 8 H Box Simulation (with

Fig.7 O Box Simulation scent traces)

Figures 4 to 10 illustrating the simulations. Inspection of the figures indicates
how mouse agents, when not influenced by the presence of other mouse agents, tend
to follow walls. In the case of the O-box environment (Figure 7) the mouse agent
has crossed the open space and is now hugging the wall of the obstruction. Figure
8 shows the H-box environment with two mouse agents and Figure 9 the four nest
environment with four mouse agents. Both figures include scent trails. The objective
in both cases was to observe how mice agents might define there own space. For the
benefit of the simulation, and to allow easy observation, the “lifespan” of the scent
deposits was kept deliberately shirt. Better results would be achieved by increasing
the longevity of the scent trails however in this case the simulation has to be run
over a much longer (and more realistic) time period. The experiment demonstrated
in Figure 10 was designed to demonstrate that the simulator could function with a
reasonable number of mouse agents.

E. Agiriga, F. Coenen, J. Hurst, R. Beynon, D. Kowalski

9 Discussion and Conclusions

In this paper we have described a simple Multi-Agent Based Simulation (MABS)
framework to describe the mouse in a box scenario. The intention was to provide
a simple start point for the development of large scale rodent simulations. Features
of the framework are: (i) that it can be used to create sophisticated environments
using the concept of obstruction agents, (ii) several mice can operate in these envi-
ronments and (iii) the mice operate in a sufficiently realistic manner. Experiments
indicated that environments were easy to create and that simulations were easy to
run and observe. The authors therefore believe that they have established a sound
foundation on which to build. Current work is directed at techniques to support more
sophisticated scenarios and to allow mouse agents to learn about their environments.

O Y

50’0

Qg
®
s ¢
[jrg) e
L) | e
& &
 Jmer <
¢ e)
Q 4
®
®,
& B8P 8
9«0 2% Tty s
®
L P LV
be {
) »
& Tk 8|

Fig. 10 Large (64 mouse agent) box simulation (with scent trails)

References

N —

. P. Crowcroft. Mice All Over. The Chicago Zoological Society, 1973.
. P. Davidsson. Multi agent based simulation: Beyond social simulation. In Proc. Workshop on

Multi Agent Based Simulation (MABS) 2000, pages 141-155. Springer-Verlag, LNCS 1979,
2001.

. P. Davidsson, J. Holmgren, J.A. Persson, and L. Ramstedt. Multi agent based simulation of

transport chains. In Proc. 7th Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems
(AAMAS), Volume 2, pages 1153-1160. Springer-Verlag, LNAI 3415, 2008.

. B. Georgeff, M.P. andPell, Pollack M.E., M. Tambe, and M. Wooldridge. The belief-desire-

intention model of agency. In Proc. 5th Int. Workshop on Intelligent Agents: Agent Theories,
Architectures and Languages (ATAL’98), pages 1-10. Springer-Verlag, London, 1998.

. A. Gill. Introduction to the Theory of Finite-state Machines. McGraw-Hill, 1962.
. C. Linarda, N. Pononb, D. Fontenilleb, and E.F. Lambin. A multi-agent simulation to assess

the risk of malaria re-emergence in southern france. Ecology Modelling, 220(2):160-174,
2009.

. X. Pan, C.S. Han, K. Dauber, and K.H. Law. A multi-agent based framework for the simula-

tion of human and social behaviors during emergency evacuations. Al and Society, 22(2):113—
132, 2007.

. F. Wagner. Modeling Software with Finite State Machines: A Practical Approach. Auerbach

Publicationsl, 2006.

