Skip to main content

Interacting Adaptive Filters for Multiple Objects Detection

  • Chapter
  • First Online:
  • 1596 Accesses

Part of the book series: Computational Imaging and Vision ((CIVI,volume 41))

Abstract

In this chapter, we consider a marked point process framework for analyzing high resolution images, which can be interpreted as an extension of the Markov random field modelling (see Chaps. 14 and 15). The targeted applications concern object detection. Similarly to Chap. 10, we assume that the information embedded in the image consists of a configuration of objects rather than a set of pixels. We focus on a collection of objects having similar shapes in the image. We define a model applied in a configuration space consisting of an unknown number of parametric objects. A density, composed of a prior and a data term, is described. The prior contains information on the object shape and relative position in the image. The data term is constructed from local filters matching the object shape. Two algorithms for optimizing such a model are described. Finally, two applications, concerning counting of a given population, are detailed. The first application concerns small lesions in the brain whereas the second aims at counting individuals in a flamingo colony.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baddeley, A., van Lieshout, M.N.M.: Stochastic geometry models in high-level vision. Stat. Images 1, 231–254 (1993)

    Google Scholar 

  2. Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Stat. Soc. B 36(2), 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  3. Cross, A., Jain, K.: Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 5(1), 25–39 (1983)

    Article  Google Scholar 

  4. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes: Elementary Theory and Methods. Probability and Its Applications, vol. I. Springer, Berlin (2003)

    MATH  Google Scholar 

  5. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes: General Theory and Structure. Probability and Its Applications, vol. II. Springer, Berlin (2008)

    Book  Google Scholar 

  6. Descamps, S., Descombes, X., Béchet, A., Zerubia, J.: Automatic flamingo detection using a multiple birth and death process. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, pp. 1113–1116 (2008)

    Google Scholar 

  7. Descombes, X., Kruggel, F., Wollny, G., Gertz, H.J.: An object based approach for detecting small brain lesions: application to Virchow-Robin spaces. IEEE Trans. Med. Imaging 23(2), 246–255 (2004)

    Article  Google Scholar 

  8. Descombes, X., Minlos, R., Zhizhina, E.: Object extraction using a stochastic birth-and-death dynamics in continuum. J. Math. Imaging Vis. 33(3), 347–359 (2009)

    Article  MathSciNet  Google Scholar 

  9. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 711–741 (1984)

    MATH  Google Scholar 

  10. Geyer, C.J., Møller, J.: Simulation and likelihood inference for spatial point processes. Scand. J. Stat. 21(4), 359–373 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Green, P.: Reversible jump MCMC computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)

    Article  MathSciNet  Google Scholar 

  12. Heier, L.A., Bauer, C.J., Schwartz, L., Zimmerman, R.D., Morgelli, S., Deck, M.D.: Large Virchow-Robin spaces: MR-clinical correlation. Am. J. Neuroradiol. 10(5), 929–936 (1989)

    Google Scholar 

  13. Johnson, A.R., Cézilly, F.: The Greater Flamingo. T & AD Poyse (2007)

    Google Scholar 

  14. Lacoste, C., Descombes, X., Zerubia, J.: Point processes for unsupervised line network extraction in remote sensing. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 1568–1579 (2005)

    Article  Google Scholar 

  15. Lafarge, F., Descombes, X., Zerubia, J., Pierrot-Deseilligny, M.: Automatic building extraction from DEMs using an object approach and application to the 3D-city modeling. J. Photogramm. Remote Sens. 63(3), 365–381 (2008)

    Article  Google Scholar 

  16. Ortner, M., Descombes, X., Zerubia, J.: Building outline extraction from digital elevation models using marked point processes. Int. J. Comput. Vis. 72(2), 107–132 (2007)

    Article  Google Scholar 

  17. Perrin, G., Descombes, X., Zerubia, J.: 2D and 3D vegetation resource parameters assessment using marked point processes. In: Tang, Y.Y., Wang, S.P., Yeung, D.S., Yan, H., Lorette, G. (eds.) Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, August 2006, vol. 1, pp. 1–4. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  18. Preston, C.: Spatial birth-and-death processes. Bull. Int. Stat. Inst. 46(2), 371–391 (1977)

    MathSciNet  Google Scholar 

  19. Rue, H., Hurn, M.: Bayesian object identification. Biometrika 86(3), 649–660 (1999)

    Article  MathSciNet  Google Scholar 

  20. Scheltens, P., Erkinjunti, T., Leys, D., Wahlund, L.O., del Ser, T., Pasquier, F., Barkhof, F., Mantyla, R., Bowler, J., Wallin, A., Ghika, J., Fazekas, F., Pantoni, L.: White matter changes on CT and MRI: an overview of visual rating scales. Eur. J. Neurol. 39(2), 80–89 (1998)

    Article  Google Scholar 

  21. Stoica, R., Descombes, X., van Lieshout, M.N.M., Zerubia, J.: An application of marked point processes to the extraction of linear networks for images. In: Mateu, J., Montes, F. (eds.) Spatial Statitics Through Applications, pp. 289–314. WIT Press, Southampton (2002)

    Google Scholar 

  22. Tupin, F., Maitre, H., Mangin, J.-M., Nicolas, J.-M., Pechersky, E.: Detection of linear features in SAR images: application to the road network extraction. IEEE Trans. Geosci. Remote Sens. 36(2), 434–453 (1998)

    Article  Google Scholar 

  23. van Lieshout, M.N.M.: Markov Point Processes and Their Applications. Imperial College Press, London (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Descombes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Descombes, X. (2012). Interacting Adaptive Filters for Multiple Objects Detection. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, MC., Davies, L. (eds) Mathematical Methods for Signal and Image Analysis and Representation. Computational Imaging and Vision, vol 41. Springer, London. https://doi.org/10.1007/978-1-4471-2353-8_13

Download citation

Publish with us

Policies and ethics