Undergraduate Topics in Computer
Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for un-
dergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and mod-
ern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored
by established experts in their fields, reviewed by an international advisory board, and contain numer-
ous examples and problems. Many include fully worked solutions.

For further volumes:
http://www.springer.com/series/7592

http://www.springer.com/series/7592

Joe Pitt-Francis - Jonathan Whiteley

Guide to Scientific
Computing in C++

@ Springer

Dr. Joe Pitt-Francis Dr. Jonathan Whiteley

Department of Computer Science Department of Computer Science
University of Oxford University of Oxford

Oxford, UK Oxford, UK

Series editor

Ian Mackie

Advisory board

Samson Abramsky, University of Oxford, Oxford, UK

Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK

Dexter Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven Skiena, Stony Brook University, Stony Brook, USA

[ain Stewart, University of Durham, Durham, UK

ISSN 1863-7310 Undergraduate Topics in Computer Science

ISBN 978-1-4471-2735-2 e-ISBN 978-1-4471-2736-9
DOI 10.1007/978-1-4471-2736-9

Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2012931858

© Springer-Verlag London Limited 2012

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Preface

Many books have been written on the C++ programming language, varying across
a spectrum from the very practical to the very theoretical. This book certainly lies
at the practical end of this spectrum, and has a particular focus for the practical
treatment of this language: scientific computing.

Traditionally, Fortran and MATLAB®' have been the languages of choice for
scientific computing applications. The recent development of complex mathemati-
cal models—in fields as diverse as biology, finance, and materials science, to name
but a few—has driven a need for software packages that allow computational sim-
ulations based on these models. The complexity of the underlying models, together
with the need to exchange code between coworkers, has motivated programmers to
develop object-oriented code (often written in C++) for these simulation packages.
The computational demands of these simulations may require software to be writ-
ten for parallel computing facilities, typically using the Message Passing Interface
(MPI). The need to train programmers in the skills to program applications such as
these led to the development of a graduate level course C++ for Scientific Comput-
ing, taught by the authors of this book, at the University of Oxford.

This book provides a guide to C++ programming in scientific computing. In
contrast to many other books on C++, features of the language are demonstrated
mainly using examples drawn from scientific computing. Object-orientation is first
mentioned in Chap. 1 where we briefly describe what this phrase—and other re-
lated terms such as inheritance—mean, before postponing any further discussion
of object-orientation or related topics until Chap. 6. In the intervening chapters un-
til object-orientation reappears, we present what is best described as “procedural
programming in C++”, covering variables, flow of control, input and output, point-
ers (including dynamic allocation of memory), functions and reference variables.
Armed with this grounding in C++ we then introduce classes in Chaps. 6 and 7. In
these two chapters, where the main features of object-orientation are showcased, we
initially, for the sake of clarity, abandon our principle of using examples drawn from
scientific computing. Once the topics have been presented however, we resume our
strategy of demonstrating concepts through scientific computing examples. More
advanced C++ features such as templates and exceptions are introduced in Chaps. 8
and 9. Having introduced the features of C++ required for scientific computing, the

IMATLAB is a registered trademark of The MathWorks, Inc.

vi Preface

remainder of the book focuses on the application of these features. In Chap. 10, we
begin to develop a collection of classes for linear algebra calculations: these classes
are then developed further in the exercises at the end of this chapter. Chapter 11
presents an introduction to parallel computing using MPI. Finally, in Chap. 12, we
discuss how an object-oriented library for solving second order differential equa-
tions may be constructed. The importance of a clear programming style to minimise
the introduction of errors into code is stressed throughout the book.

This book is aimed at programmers of all levels of expertise who wish to write
scientific computing programs in C++. Experience with a computer to the level
where files can be stored and edited is expected. A basic knowledge of mathematics,
such as operations between vectors and matrices, and the Newton—Raphson method
for finding the roots of nonlinear equations would be an advantage.

The material presented here has been enhanced significantly by discussions about
C++ with colleagues, too numerous to list here, in the Department of Computer Sci-
ence at the University of Oxford. A special mention must, however, be made of the
Chaste” programming team: particular gratitude should be expressed to Jonathan
Cooper for readily sharing with us his impressively wide and deep knowledge of
the C++ language. Other members of the team who have significantly helped clarify
our thoughts on the C++ language are Miguel Bernabeu, James Osborne, Pras Path-
manathan and James Southern. We should also thank students from both the M.Sc.
in Mathematical Modelling and Scientific Computing and the Doctoral Training
Centres at the University of Oxford for unwittingly aiding our understanding of the
language through asking pertinent questions.

Finally, it is always important to remember—especially when debugging a par-
ticularly tiresome code—that there is far more to life than C++ programming for
scientific computing. We would both like to thank our families for their love and
support, especially during the writing of this book.

Oxford, UK Joe Pitt-Francis
Jonathan Whiteley

2The Cancer, Heart And Soft Tissue Environment (Chaste) is an object-oriented package, written
in C++, for simulations in the field of biology. More details on this package may be found at
http://www.cs.ox.ac.uk/chaste/.

http://www.cs.ox.ac.uk/chaste/

Contents

1 GettingStarted, 1
1.1 ABriefIntroductionto C++ 1
1.1.1 C++is “Object-Oriented” 1

1.1.2 Why You Should Write Scientific Programs in C++)

1.1.3 Why You Should Not Write Scientific Programs in C++ . . 4

1.1.4 Scopeof ThisBook 4

1.2 AFirst C++ Program 5
1.3 Compilinga C++Program 6
1.3.1 Integrated Development Environments 6

1.3.2 Compiling at the Command Line 7

1.33 CompilerFlags. 8

1.4 Variables 10
1.4.1 Basic Numerical Variables 10

1.4.2 Other Numerical Variables 12

1.4.3 Mathematical Operations on Numerical Variables 13

144 DivisionofIntegers 15

145 Arrayso 16

1.4.6 ASCII Characters 17

1.4.7 Boolean Variables 17

148 Strings 18

1.5 SimpleInputandOutput 19
1.5.1 BasicConsole Output 19

1.52 KeyboardInput 20

1.6 Theassert Statement 21
1.7 Tips: DebuggingCode 22
1.8 Exercises e 23
2 FlowofControl 25
2.1 Theif Statement 25
2.1.1 ASingleif Statement 26
2.1.2 Example: Code for a Single i f Statement 27

213 if-elseStatements 27
2.14 Multiple i f Statements 27
2.1.5 Nested if Statements 28

vii

viii Contents
2.1.6 Boolean Variables 28

2.2 Logical and Relational Operators 29
23 Thewhile Statement 30
2.4 Loops Using the for Statement 32
2.4.1 Example: Calculating the Scalar Product of Two Vectors . . 34

2.5 TheswitchStatement 34
2.6 Tips: Loopsand Branches 35
2.6.1 Tip 1: A Common Novice Coding Error 35

2.6.2 Tip 2: Counting fromZero. 36

2.6.3 Tip 3: Equality Versus Assignment 37

2.6.4 Tip 4: Never Endingwhile Loops 38

2.6.5 Tip5: Comparing Two Floating Point Numbers 39

27 EXEICISes . . . v v v v v i e 39
3 FileInputandOutput 43
3.1 Redirecting Console OutputtoFile 43
32 WritingtoFile o 44
3.2.1 Setting the Precision of the Output 46

3.3 ReadingfromFile 47
3.4 Reading from the Command Line 49
3.5 Tips: Controlling Output Format 50
36 EXercises 51
4 Pointers 55
4.1 Pointers and the Computer’s Memory 55
4.1.1 Addresses 55

4.1.2 Pointer Variables oL 56

4.1.3 Example Useof Pointers 56
4.1.4 Warnings on the Use of Pointers 57

4.2 Dynamic Allocation of Memory for Arrays 58
421 Vectors 59

422 Matricesot e 60

4.2.3 TIrregularly Sized Matrices 61

43 Tips:Pointers 62
43.1 Tip 1:Pointer Aliasing 62
4.3.2 Tip 2: Safe Dynamic Allocation 63
433 Tip3:EverynewHasadelete 63

4.4 EXEercises v v i i e 64
5 Blocks, Functions and Reference Variables 65
5.1 Blocks 65
5.2 Functions 66
5.2.1 Simple Functions 66

5.2.2 Returning Pointer Variables from a Function 69

5.2.3 Use of Pointers as Function Arguments 70

5.24 Sending Arrays to Functions 71

Contents ix
5.2.5 Example: A Function to Calculate the Scalar Product of
Two Vectors 73
5.3 Reference Variables 74
5.4 Default Values for Function Arguments 75
5.5 Function Overloading 76
5.6 Declaring Functions Without Prototypes 78
5.7 Function Pointers oL 79
5.8 Recursive Functions, 81
5.9 Modules 82
5.10 Tips: Code Documentation 83
SA1 EXerciseso v v vt 85
6 AnIntroductiontoClasses 87
6.1 The Raison d’Etre for Classes 87
6.1.1 Problems That May Arise When Using Modules 88
6.1.2 Abstraction, Encapsulation and Modularity Properties of
Classes 88
6.2 A First Example Simple Class: A Classof Books 89
6.2.1 Basic Featuresof Classes 89
6.2.2 HeaderFiles 91
6.2.3 Setting and Accessing Variables 92
6.24 Compiling Multiple Files 94
6.2.5 AccessPrivileges 96
6.2.6 Including Function Implementations in Header Files 97
6.2.7 Constructors and Destructors 98
6.2.8 PointerstoClasses, 103
6.3 The friendKeyword 103
6.4 A Second Example Class: A Class of Complex Numbers 105
6.4.1 Operator Overloading 105
6.4.2 The Class of Complex Numbers 106
6.5 Some Additional Remarks on Operator Overloading 112
6.6 Tips: CodingtoaStandard. 112
6.7 EXercises 114
7 Inheritance and Derived Classes 117
7.1 Inheritance, Extensibility and Polymorphism 117
7.2 Example: A Class of E-books Derived from a Class of Books . . . 118
7.3 Access Privileges for Derived Classes 120
7.4 Classes Derived from Derived Classes 121
7.5 Run-Time Polymorphism 122
7.6 The Abstract Class Pattern 124
7.7 Tips: UsingaDebugger 126
7.8 EXercises 127
8 Templates 131
8.1 Templates to Control Dimensions and Verify Sizes 131

X Contents
8.2 Templates for Polymorphism 133
8.3 A Brief Survey of the Standard Template Library 134

83.1 Vectors e 134
832 Sets. 137
8.4 Tips: Template Compilation 139
85 ExXercises 140

9 Errorsand Exceptions 141

9.1 Preconditions 142

9.1.1 Example: Two Implementations of a Graphics Function . . 142
9.2 Three Levelsof Errors 143
9.3 Introducing the Exception 144
9.4 Using Exceptions 145
9.5 Tips: Test-Driven Development 146
9.6 EXercises 147

10 Developing Classes for Linear Algebra Calculations 151
10.1 Requirements of the Linear Algebra Classes 151
10.2 Constructors and Destructors 156

10.2.1 The Default Constructor 156
10.2.2 The Copy Constructor 156
10.2.3 A Specialised Constructor 157
10.2.4 Destructoro e 157
10.3 Accessing Private Class Members 157
10.3.1 Accessing the Sizeofa Vector. 158
10.3.2 Overloading the Square Bracket Operator 158
10.3.3 Read-Only Access to Vector Entries 158
10.3.4 Overloading the Round Bracket Operator 158
10.4 Operator Overloading for Vector Operations 158
10.4.1 The Assignment Operator 159
10.4.2 Unary Operators 159
10.4.3 Binary Operators o ... 159
10.5 Functions e 159
10.5.1 Members Versus Friends 159
10.6 Tips: Memory Debugging Tools 160
10.7 EXercises o v i i 161

11 An Introduction to Parallel Programming UsingMPI 165
11.1 Distributed Memory Architectures 165
11.2 Installing MPI 167
11.3 A First Program Using MPI 167

11.3.1 Essential MPI Functions 168
11.3.2 Compiling and Running MPICode 169
11.4 Basic MPI Communication 171
11.4.1 Point-to-Point Communication 171

11.4.2 Collective Communication 174

Contents Xi

11.5 Example MPI Applications 180
11.5.1 Summationof Series 180
11.5.2 Parallel Linear Algebra 182

11.6 Tips: Debugging a Parallel Program 186
11.6.1 Tip 1: Make an Abstract Program 186
11.6.2 Tip 2: Datatype Mismatch 186
11.6.3 Tip 3: Intermittent Deadlock 187
11.6.4 Tip 4: Almost Collective Communication 187

117 EXeICises v v v v v i e e e e 188

12 Designing Object-Oriented Numerical Libraries 193

12.1 Developing the Library for Ordinary Differential Equations 194
12.1.1 Model Problems 194
12.1.2 Finite Difference Approximation to Derivatives 195
12.1.3 Application of Finite Difference Methods to Boundary

Value Problems, 197
12.1.4 Concluding Remarks on Boundary Value Problems in One
Dimension 199

12.2 Designing a Library for Solving Boundary Value Problems 200
12.2.1 The Class SecondOrderOde 200
12.2.2 The Class BoundaryConditions 201
12.2.3 The Class FiniteDifferenceGrid 202
1224 TheClass BvpOde v .. 203
12.2.5 Using the Class BvpOde 205

12.3 Extending the Library to Two Dimensions 205
12.3.1 Model Problem for Two Dimensions 207
12.3.2 Finite Difference Methods for Boundary Value Problems

in Two Dimensions 207

12.3.3 Setting Up the Linear System for the Model Problem . . . 209

12.3.4 Developing the Classes Required 210

12.4 Tips: Using Well-Written Libraries 210

12.5 EXercises o oo e e 211
Appendix A Linear Algebra 213

A.l1 Vectorsand Matrices oL 213
A.1.1 Operations Between Vectors and Matrices 214
A.1.2 The Scalar Product of Two Vectors 215
A.1.3 The Determinant and the Inverse of a Matrix 215
A.1.4 Eigenvalues and Eigenvectors of a Matrix 216
A.1.5 Vector and Matrix Norms 216

A.2 Systems of Linear Equations 217
A.2.1 Gaussian Elimination 217
A.2.2 The Thomas Algorithm 222

A.2.3 The Conjugate Gradient Method 222

Xii Contents

Appendix B Other Programming Constructs You Might Meet 225
B.1 CStyleOutput 225

B.2 C Style Dynamic Memory Allocation 226

B.3 Ternary ?: Operator v i i 226

B.4 Using Namespace, 227

B.5 Structures 228

B.6 Multiple Inheritance L. 228

B.7 ClassInitialisers 229
Appendix C Solutions to Exercises 231
C.1 Matrix and Linear System Classes 231

C.2 ODESolverLibrary 240
Further Reading, 245
Mathematical Methods and Linear Algebra 245
C++Programming 245

The Message-Passing Interface MPI) 245

	Guide to Scientiﬁc Computing in C++
	Preface
	Contents

