Model-Based Development and Evolution of Information Systems

John Krogstie

Model-Based Development and Evolution of Information Systems

A Quality Approach

John Krogstie Norwegian University of Science & Technology Sem Sælandsvei 7-9 Trondheim, Norway

ISBN 978-1-4471-2935-6 ISBN 978-1-4471-2936-3 (eBook) DOI 10.1007/978-1-4471-2936-3 Springer London Heidelberg New York Dordrecht

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2012939064

© Springer-Verlag London 2012

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The work presented in this book is rooted many years back, both directly through own work over the last 20 years, and obviously indirectly, since this work has been done in a tradition of conceptual modelling going back additionally 20 years or more.

When I did my Master Thesis at NTH (now NTNU) in 1990, the 'five year plan' was to work 2 years in a consulting company to get more practical experience, before going back to do a Ph.D. in an area related to conceptual modelling. I still remember the interview with my later employer (Andersen Consulting) when being given the 'what do you do in 5 years' question. I obviously did not mention the Ph.D. plans.

Anyway, after 18 months in the trenches with Andersen Consulting, I was back at NTH as a Ph.D. student, with Arne Sølvberg as supervisor. At this time Arne had around ten Ph.D. students, all highly qualified. I had met several of them as a master student (as lecturers, supervisors and co-students), and quickly started to discuss. I remember in particular discussions with Odd Ivar Lindland on aspects of quality of models, discussion later followed up by many in the group, including my current colleagues at NTNU Jon Atle Gulla and Guttorm Sindre. In one particular group meeting, Odd Ivar described his early ideas on quality of models. Jon Atle, also having a masters in linguistics, suggested that he should look at the differentiation between syntax, semantics, and pragmatics found in linguistics and semiotics. The seed of the most important structuring principles you find in this book, the SEQUAL framework, was planted in these discussions almost 20 years ago.

So why this focus on (conceptual) modelling?

One can argue that the main reason why humans have excelled as species is our ability to represent, reuse and transfer knowledge across time and space. Whereas in most areas of human conduct, one-dimensional natural language is used to express and share knowledge, we see the need for and use of two and many-dimensional representational forms to be on the rise. One such representational form is called *conceptual modelling*. A *conceptual model* is traditionally defined as a description of the phenomena in a domain at some level of abstraction, which is expressed in a semi-formal or formal diagrammatical language.

Modelling is an important part of both information systems development and evolution, and organisational development in general (e.g. used in enterprise modelling/ enterprise architecture). The field includes numerous evolving modelling methods, notations and approaches. Even with some attempts to standardise (e.g. UML for object-oriented design), new modelling methods are being introduced regularly.

Whereas modelling techniques traditionally were used to create intermediate artefacts in systems analysis and design, more and more modelling methodologies take a more active approach to the exploitation of this particular form of knowledge representation. In approaches such as business process management (BPM), model driven architecture (MDA) and domain specific modelling/domain specific modelling languages (DSM/DSL). In enterprise architecture (EA) and active knowledge modelling (AKM), the models are used directly to form the information system of the organisation. At the same time, similar techniques are used also for sense-making and communication, model simulation, quality assurance and requirements specification in connection to more traditional forms of information systems development.

Given that modelling techniques are used in such a large variety of tasks with very different goals, it is important for appropriate use of the techniques to have a proper overview of different uses of modelling, and guidelines for what make a model sufficiently *good* to achieve the decided goals. An important aspect of this book is to discuss the quality of models and modelling languages in this setting. To help us in this process, a framework for understanding quality of models and modelling languages (SEQUAL) has been developed, and its use is described in detail in the book. Although we have been working relative to this framework over a long period, the book will provide many new developments and applications of the framework.

A number of books exist on particular approaches to modelling. There exist a number of standard system analysis and design books (dealing with ER-modelling, DFD, UML etc.), generally using these as tools to be learnt as part of software development. In our book we will look more broadly at the topic of modelling, making it easier when needing to use a new modelling approach to identify the type of approach and its strength and weaknesses.

What characterises existing books is that they look in particular on a given technique (and is often overly positive relative to this approach), without giving sufficient basis for judging the appropriateness of this technique relative to other available techniques for a given situation. There is no approach to modelling and model-based systems development that is best for all types of situations, thus a high-level overview to make it possible to evaluate the appropriateness of different approaches is called for.

The book has two intended audiences:

- It is primarily for computer science, software engineering and information system students on the post-graduate level (master's/Ph.D.), after they have had an introduction to information system analysis and design (for example, UML for systems design or process modelling-based using e.g. BPMN), and databases, that want to know more about conceptual modelling in their preparation for professional practice.
- Professionals with detailed experience and responsibilities related to development and evolution of information systems and information systems methodology including enterprise modelling and enterprise architecture that need to formalise

and structure their practical experiences or to update their knowledge, as a way to improve their professional activity.

At this level, many students have learnt modelling as a predefined tool, and have limited training in evaluating the appropriateness of models and modelling languages for a certain task. They also have limited practical experience with more than a few notations, and seldom real-life experiences with large-scale modelling and systems development. Many of the concepts and principles underlying the concrete modelling notation easily get abstract, and there is a need to exemplify the points and bridge the theoretical parts of the course to how it can address problems in practice.

Courses of this type often are a mix of general material and presentation of the favourite approaches of the lecturer. Thus I foresee the book to be a possible basis for many such courses, but where the syllabi in addition to material from the textbook can contain a number of recent articles and more detailed descriptions of selected techniques.

Acknowledgements

A large number of people deserve to be mentioned relative to the content of this book as collaborators and co-writers of projects and research work bringing us to the point we are today. Whereas many of our debts in this regard is visible through the references in the text, also many people have contributed in a more subtle way, bringing inspiration or roadblocks to be overcome.

When I started working in this field in the early 1990s, the research group around Arne Sølvberg was very important. I have already mentioned Arne, Odd Ivar, Jon Atle and Guttorm. Other collaborators at the time were Anne Helga Seltveit, Gunnar Brattås, Rudolf Andersen, Geir Willumsen, Mingwei Yang and Harald Rønneberg. In the Tempora project, I worked also with Benkt Wangler, Peter McBrien, and Richard Owens. The international collaboration led me into the IFIP WG 8.1 community and the CAiSE conference, which I have followed over the years collaborating with among others Wil van der Aalst, Jan Recker, Michael Rosemann, Andreas Opdahl, Sjaak Brinkkemper, Kalle Lyytinen, Barbara Pernici, Keng Siau, Terry Halpin, Antoni Olive, Oscar Pastor, Erik Proper, Janis Bubenko, Colette Rolland, Peri Loucopoulos, Janis Stirna, Anne Persson, Peter Fettke, Peter Loos and Constantin Houy.

After doing my Ph.D. I was again over in Andersen Consulting, and want to thank in particular Bjørn Ivar Danielsen, Nils Øveraas and Lars Henriksen for making it possible to keep in contact with the academic community also when working as a consultant. After this I worked in SINTEF, in particular on a number of Norwegian and EU projects where modelling of information systems was central. In particular I would like to thank Steinar Carlsen, Håvard Jørgensen, Dag Karlsen, Frank Lillehagen, Oddrun Ohren, Svein Johnsen, Heidi Brovold, Vibeke Dalberg, Siri Moe Jensen, Rolf Kenneth Rolfsen, Arne Jørgen Berre, Asbjørn Følstad, Reidar Gjersvik and Bjørn Skjellaug on the national front and Joerg Haake, Weigang Wang, Jessica Rubart, Michael Petit, Kurt Kosanke, Martin Zelm, Nacer Boudlidja, Herve Panetto, Guy Doumeingts and Thomas Knothe on the international front.

Also in the years connected to NTH and NTNU, I have had the pleasure to collaborate with a number of master's and Ph.D. students and postdocs, including Babak Amin Farschchian, Sofie de Flon Arnesen, Maria Rygge, Anna Gunnhild Nysetvold, Alexander Nossum, Yun Lin, Csaba Veres, Jennifer Sampson, Eirik Berg, Shang Gao, Sundar Gopalakrishnan, Gustav Aagesen and Lillian Hella.

A number of people at NTNU have also been influential through the normal scientific discourse, including Hallvard Trætteberg, Reidar Conradi, Monica Divitini, Dag Svanæs, Eric Monteiro, Agnar Aamodt, Pieter Toussaint, Letizia Jaccheri, Alf Inge Wang, Kjetil Nørvåg, Arild Faxvaag, Rolv Bræk, Sobah Abbas Petersen, Peter Herrmann, Frank Kraemer and Tor Stålhane.

Finally, I should mention my wife, Birgit Rognebakke Krogstie. Birgit also has a Ph.D. in Computer Science. Although it is in a somewhat different field, we often meet on various arenas including at home, making the dinner table discussions at times quite abstract and conceptual, to our children's irritation and at times (I hope) inspiration.

John Krogstie

Outline of the Book

In the first chapter we introduce the topic area and the most important concepts, including overall philosophy underlying the thinking on quality of models. This includes social constructivism, knowledge creation in organisations, semiotics and model monopoly. We also give a high-level overview of the most important goals of modelling and techniques for model-based development such as MDSD, DSM/ DSL, BPM, MDA and AKM. The case studies used throughout the book both for illustrations in the book itself, and as cases for the exercises are briefly described (the actual case studies being provided in Appendix C).

Chapter 2. Methodology for Computerised Information Systems support in Organisation: Present the generic tasks and model types found in information systems development and evolution, and main methodologies for mixing different phases of information system development. In particular we describe in more detail the main approaches to model-based development presented on a high level in Chap. 1, but also provide a historical account of the development of methodologies in the area. Methodologies are classified relative to goal, process, product, capabilities needed, stakeholder participation, organisation and location of the tasks to be done.

Chapter 3. Modelling languages: Perspectives and abstraction mechanisms: Present main abstraction mechanisms used in modelling languages (generalisation, aggregation, classification, association), and survey well-known modelling approaches according to the perspective of modelling (behavioural, functional, structural, goal and rule, object-oriented, communicational, actor and role and topological). Process modelling is discussed relative to all perspectives. In addition, we present examples of multi-perspective modelling languages such as UML, EEML and GEMAL.

Chapter 4. Quality of models: Present the framework for quality of models (SEQUAL), including examples of means to achieve model quality of different levels (such as tool functionality and modelling techniques being appropriate for the development of models of high quality). Quality is discussed on seven levels: physical, empirical, syntactic, semantic, pragmatic, social and deontic.

Chapter 5. Quality of modelling languages: One important mean for making good models is the use of an appropriate modelling language. We describe here six facets of quality of a modelling language: domain appropriateness, comprehensibility appropriateness, participant appropriateness, modeller appropriateness, tool appropriateness and organisational appropriateness. The use of this part of the framework for the choice and guidance of development of new languages is further described in Chap. 7.

Chapter 6. Specialisation of SEQUAL: Whereas a strength of SEQUAL is that it is applicable on a large range of model types, this can also be a limitation since different types of models have their different characteristics and limitations. We have through practical needs devised a number of specialisations of the framework for different types of models, including for business process models, requirements models, data models, ontologies and interactive process models. We also see how we can apply SEQUAL for understanding data quality and the quality of maps, a different form of two-dimensional representation of knowledge.

Chapter 7. Applications of SEQUAL: Illustrates how to apply SEQUAL in connection to support modelling, but also in the assessment of existing and new models, modelling languages, modelling methodologies and modelling tools. Examples are provided from the application of SEQUAL in both industrial and governmental settings.

Chapter 8. Summary and outlook: Discusses the potential for model-based techniques in the future in the light of future developments in the business and IT world.

Each chapter ends with a summary of main aspects, and include a number of possible tasks. Whereas some of these are review question, where the answers can be found more or less directly in the text, the exercises are more demanding. The exercises are divided in three categories.

- 1. Smaller tasks that can be done alone
- 2. Pair exercises that for instance can be used during class in small breakout sessions
- Group task, which are larger tasks, often including a more thorough investigation or modelling assignment to be done

Many tasks are to some extent open relative to for instance the modelling notations and tools that are used, to make it easier to adjust them to the interests and focus of concrete modelling courses using the book as a basis.

Contents

1	Intr	oductio)n	1
	1.1	Philos	ophical Backdrop	5
		1.1.1	Background on Knowledge Creation in Organisations	8
	1.2	Use of	f Modelling in the Development	
		and E	volution of Information Systems	9
	1.3	Appro	paches to Model-Based Development	
		and E	volution of Information Systems	13
	1.4	Outlin	e of the Book	15
	1.5	Summ	nary	15
		Review	w Questions	16
		Proble	ems and Exercises	16
	Refe	erences.		17
2	Met	hodolo	gies for Computerised Information	
-			pport in Organisations	19
	2.1		mework for IS Methodologies	19
		2.1.1	•	21
		2.1.2	Coverage in Process	24
		2.1.3	Coverage of Product	27
		2.1.4	Capabilities for CIS-Portfolio Evolution	29
		2.1.5	Stakeholder Participation	31
		2.1.6	Organisation of Development	
			and Evolution of Information Systems	35
		2.1.7	Location: Where the Work Takes Place	36
	2.2	A Sho	rt History of IS Methodologies	39
		2.2.1	The Waterfall Methodology	40
		2.2.2	Prototyping	42
		2.2.3	Transformational and Operational Development	44
		2.2.4	The Spiral Model	46
		2.2.5	Object-Oriented Systems Development	
			and the Rational Unified Process	47
		2.2.6	Incremental Development and Agile Development	49
		2.2.7	Multiview	51
		2.2.8	Methodologies for Maintenance and Evolution of IS	53

		2.2.9	Enterprise Architecture	56
		2.2.10	Complete Methodological Framework	58
	2.3	Examp	les of Model-Based Methodologies	59
		2.3.1	Traditional Use of Modelling in Analysis,	
			Requirements Specification and Design	59
		2.3.2	MDA: Model-Driven Architecture	60
		2.3.3	DSM and DSL	62
		2.3.4	Business Process Modelling (BPM)	
			and Workflow Modelling	63
		2.3.5	Enterprise Modelling	66
		2.3.6	Interactive Models and Active Knowledge Modelling	72
	2.4	Particip	batory Modelling	75
		2.4.1	The Modelling Conference Technique	75
		2.4.2	Tasks and Roles in Participatory Modelling	78
	2.5	Summa	ıry	79
			Questions	80
		Probler	ns and Exercises	80
	Refe	erences		81
3	Mor	lelling I	anguages: Perspectives	
5			tion Mechanisms	89
	3.1		ction Mechanisms in Modelling	89
	5.1	3.1.1	Hierarchical Abstraction	90
		3.1.2	Standard Hierarchical Abstraction Mechanisms	93
		3.1.2	Levels of Models	101
	3.2		on Philosophical Ontologies on Modelling	101
	5.2	3.2.1	BWW – Bunge-Wand-Weber	104
	3.3		ctives to Modelling	106
	0.0	3.3.1	An Overview of Modelling Perspectives	108
		3.3.2	The Behavioural Perspective	110
		3.3.3	The Functional Perspective	116
		3.3.4	The Structural Perspective	123
		3.3.5	The Goal and Rule Perspective	128
		3.3.6	The Object Perspective	138
		3.3.7	The Communication Perspective	145
		3.3.8	The Actor and Role Perspective	153
		3.3.9	The Topological Perspective	160
	3.4		s Modelling According to Different	100
	5.1		ing Perspectives	164
		3.4.1	Process Modelling According to the Behavioural	101
		5	Perspective	165
		3.4.2	Process Modelling According to the Functional	100
		2.112	Perspective	165
		3.4.3	Process Modelling According to the Structural	100
		2.113	Perspective	166
			r	100

		3.4.4	8			
			and Rule Perspective	167		
		3.4.5	Process Modelling According to the Object Perspective	169		
		3.4.6	Process Modelling According to the Communicational			
			Perspective	170		
		3.4.7	Process Modelling According to the Actor			
			and Role Perspective	171		
		3.4.8	Process Modelling According to the Topological			
			Perspective	171		
		3.4.9	Summary on Process Modelling	171		
	3.5	Applyi	ing Several Modelling Perspectives in Concert	172		
		3.5.1	Description of UML	175		
		3.5.2	Description of EEML	181		
		3.5.3	Description of GEMAL	187		
	3.6	Summ	ary	192		
			v Questions	193		
		Proble	ms and Exercises	193		
	Refe			194		
	0			205		
4		ality of Models				
	4.1		AL: A Framework for Quality of Models	200		
			on Semiotic Theory	206		
		4.1.1	G, the Goals of the Modelling Task	208		
		4.1.2	A, the Audience	209		
		4.1.3	<i>L</i> , the Language Extension	209		
		4.1.4	<i>M</i> , the Externalised Model	210		
		4.1.5	D, the Modelling Domain	210		
		4.1.6	<i>K</i> , the Relevant Explicit Knowledge of the Audience	211		
		4.1.7	<i>I</i> , the Social Audience Interpretation	212		
		4.1.8	T, the Technical Audience Interpretation	212		
	4.2	Physic	al Quality	213		
		4.2.1	Model Repository	214		
		4.2.2	Model Interchange	215		
		4.2.3	Support for Meta-Modelling	216		
	4.3	Empiri	ical Quality	217		
	4.4	Syntac	tic Quality	223		
	4.5	Seman	tic and Perceived Semantic Quality	227		
	4.6	Pragm	atic Quality	231		
	4.7	Social	Quality	235		
	4.8	Deonti	c Quality	239		
	4.9		ary	243		
			v Questions	244		
			ms and Exercises	244		
	Refe			245		

5	Qua	lity of 1	Modelling Languages	249	
	5.1	Langu	age Quality in SEQUAL	256	
		5.1.1	Domain Appropriateness	257	
		5.1.2	Comprehensibility Appropriateness	257	
		5.1.3	Participant Appropriateness	263	
		5.1.4	Modeller Appropriateness	264	
		5.1.5	Tool Appropriateness	265	
		5.1.6	Organisational Appropriateness	266	
	5.2	Qualit	ty of Meta-Models (Language Models)	266	
	5.3	Specia	alisations of SEQUAL for Language Quality	268	
		5.3.1	Domain Appropriateness of Enterprise Modelling		
			Languages	268	
		5.3.2	Comprehensibility Appropriateness of Enterprise		
			Modelling Languages	275	
		5.3.3	Participant Appropriateness of Enterprise		
			Modelling Languages	275	
		5.3.4	Modeller Appropriateness of Enterprise		
			Modelling Languages	276	
		5.3.5	Tool Appropriateness of Enterprise		
			Modelling Languages	276	
		5.3.6	Organisational Appropriateness of Enterprise		
			Modelling Languages	276	
	5.4 Summary		nary	277	
			w Questions	277	
		Proble	ems and Exercises	277	
	Refe	erences.		278	
6	Specialisations of SEQUAL				
	6.1	Qualit	ty of Business Process Models	281	
		6.1.1	What Is a Good Business Process?	282	
		6.1.2	How Can Improvement Be Measured?	283	
		6.1.3	Heuristics for Improving Processes	284	
		6.1.4	Quality of Process Models According to SEQUAL	287	
	6.2	Qualit	ty of Requirement Specification Models	290	
		6.2.1	Physical Quality of an SRS	291	
		6.2.2	Empirical Quality of an SRS	291	
		6.2.3	Syntactic Quality of an SRS	292	
		6.2.4	Semantic Quality of an SRS	292	
		6.2.5	Pragmatic Quality of an SRS	294	
		6.2.6	Social Quality of an SRS	294	
		6.2.7	Deontic Quality of an SRS	294	
		6.2.8	Orthogonal Aspects	296	
		6.2.9	Overall Comparison	297	

	6.3	Qualit	ty of Data Models	297
		6.3.1	Physical Quality of a Data Model	300
		6.3.2	Empirical Quality of a Data Model	300
		6.3.3	Syntactic Quality of a Data Model	301
		6.3.4	Semantic Quality of a Data Model	301
		6.3.5	Pragmatic Quality of a Data Model	302
		6.3.6	Social Quality of a Data Model	302
		6.3.7	Deontic Quality of a Data Model	302
		6.3.8	Final Remarks	303
	6.4	Data (Quality	303
	6.5		ty of Ontologies	306
		6.5.1	Quality of Ontologies for Reuse	309
	6.6	Oualit	ty of Interactive Models	311
	6.7	-	y of Maps	316
		6.7.1	Characteristics of Maps	316
		6.7.2	MAPQUAL	317
		6.7.3	Comparing Quality of Maps and Quality of Models	319
		6.7.4	Quality of Integrated Conceptual	
			and Topological Models	321
	6.8	Summ	nary	321
			w Questions	322
			ems and Exercises	322
	Refe			323
7			ns of SEQUAL	327
/	Арр 7.1		ss Heuristics for Information Systems Modelling	327
	/.1	7.1.1	Expansion Heuristics	330
		7.1.1	Consolidation Heuristics	331
		7.1.2	Heuristics to Guide Method Evolution	332
	7 2			332 332
	7.2	7.2.1	ating Ontology-Models for Reuse FOAF	333
		7.2.1	OpenCyc	333 334
		7.2.2	1 4	
			SUMO GUMO+UbisWorld	334
		7.2.4		335
		7.2.5	Ontology Evaluation	337
	7 2	7.2.6	Summary of Evaluation	341
	7.3		ating the Quality of Modelling Languages	343
		7.3.1	Analytical Evaluation of the Quality of UML	343 344
		7.3.2	Language Quality of UML	
		7.3.3	Quality of the UML Language Model	350
		7.3.4	Evaluating Domain Appropriateness of BPMN	351
		7.3.5	Evaluating Quality of Enterprise Modelling Languages Quality of Enterprise Modelling Interchange Format	353 364
		7.3.6	Linghty of Enterprise Modelling Interchange Format	364

	7.4		370
		7.4.1 Developing Minor Extension of Existing Languages	370
		7.4.2 Supporting Comprehensive Meta-modelling	377
	7.5	Summary	387
		Review Questions	387
		Problems and Exercises	387
	Refe	rences	388
8	Sum	mary and Outlook	393
	8.1	Future Technological Developments	393
		8.1.1 The Support of End-to-End Design and Engineering Process	394
			396
		e e	398
		•	399
	8.2	Modelling in Future Technological Development	577
	0.2		402
	8.3		405
			405
	Refe		405
Ар	pend	ix A: Terminology	407
	A.1	Time	407
	A.2	Phenomena	408
	A.3	State and Rules	409
	A.4	Data, Information and Knowledge	411
	A.5	Language and Model	413
	A.6	Actors and Activities	415
	A.7	Systems	417
	A.8	Social Construction	418
	A.9	Methodology	419
Ар	pend	ix B: List of Abbreviations	423
	-		107
Ар	-		427
	C.1	Teaching at the University (Both on the Study-Program	107
			427
		1	427
			428
	C 2		428
	C.2	6	429
			429
		C.2.2 Basis for Instance-Level Model (Most Information	421
		Found on the Web)	431
Inc	lex		433