Optimal Sampled-Data Control Systems

Communications and Control Engineering Series

Editors: B.W. Dickinson · A. Fettweis · J.L. Massey · J.W. Modestino E.D. Sontag · M. Thoma

CCES published titles include:

Sampled-Data Control Systems J. Ackermann

Interactive System Identification T. Bohlin

The Riccatti Equation S. Bittanti, A.J. Laub and J.C. Willems (Eds.)

Nonlinear Control Systems A. Isidori

Analysis and Design of Stream Ciphers R.A. Rueppel

Sliding Modes in Control Optimization V.I. Utkin

Fundamentals of Robotics M. Vukobratović

Parametrizations in Control, Estimation and Filtering Problems: Accuracy Aspects M. Gevers and G. Li

Parallel Algorithms for Optimal Control of Large Scale Linear Systems Zoran Gajić and Xuemin Shen

Loop Transfer Recovery: Analysis and Design A. Saberi, B.M. Chen and P. Sannuti

Markov Chains and Stochastic Stability S.P. Meyn and R.L. Tweedie

Robust Control: Systems with Uncertain Physical Parameters J. Ackermann in co-operation with A. Bartlett, D. Kaesbauer, W. Sienel and R. Steinhauser

Optimization and Dynamical Systems U. Helmke and J.B. Moore Tongwen Chen and Bruce Francis

Optimal Sampled-Data Control Systems

With 222 Figures

London Berlin Heidelberg New York Paris Tokyo Hong Kong Barcelona Budapest Tongwen Chen, PhD Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Bruce Allen Francis, PhD Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 1A4

ISBN-13:978-1-4471-3039-0 DOI: 10.1007/978-1-4471-3037-6 e-ISBN-13:978-1-4471-3037-6

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

© Springer-Verlag London Limited 1995 Softcover reprint of the hardcover 1st edition 1995

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Typesetting: Camera ready by authors

69/3830-543210 Printed on acid-free paper

To Ming and Jingwen, Jessie and Lian

Preface

Many techniques are available for designing linear multivariable analog controllers: pole placement using observer-based controllers, loopshaping, the inverse Nyquist array method, convex optimization in controller parameter space, and so on. One class of techniques is to specify a performance function and then optimize it, and one such performance function is the norm of the closed-loop transfer matrix, suitably weighted. The two most popular norms to optimize are the \mathcal{H}_2 and \mathcal{H}_{∞} norms. The fact that most new industrial controllers are digital provides strong motivation for adapting or extending these design techniques to digital control systems.

This book is intended as a graduate text in linear sampled-data (SD) control systems. The subject of SD control is a subdomain of digital control; it deals with sampled signals and their discrete-time processing, but not with quantization effects nor with issues of real-time software. SD control systems consist of continuous-time plants to be controlled, discrete-time controllers controlling them, and ideal continuous-to-discrete and discrete-to-continuous transformers.

As a prerequisite, the ideal reader would know multivariable analog control design, especially \mathcal{H}_2 and \mathcal{H}_∞ theory—a user's guide to \mathcal{H}_2 and \mathcal{H}_∞ theory is presented in Chapter 2. A prior course on digital control at the undergraduate level would also be an asset. Standard facts about state models in continuous and discrete time are collected in the appendix.

Part I (Chapters 2-8) is aimed at first-year graduate students, while Part II (Chapters 9-13) is more advanced. In particular, some of the development in the later chapters is framed in the language of operator theory.

In Part I we present two indirect methods of SD controller design:

- Discretize the plant and design the controller in discrete time.
- Design the controller in continuous time, then discretize it.

These two approaches both involve approximations to the real problem, which involves an analog plant, continuous-time performance specifications, and a SD controller. Part II proposes a direct attack in the continuous-time domain, where SD systems are time-varying (actually, periodic). The main problems addressed are \mathcal{H}_2 and \mathcal{H}_{∞} optimal SD control. The solutions are presented in forms that can readily be programmed in, for example, MATLAB. MATLAB with the μ -Tools toolbox was used for the examples.

Acknowledgements

Graduate courses based on this book are offered at the University of Calgary and the University of Toronto. The first author wishes to thank the following students at the University of Calgary for their careful reading of the drafts: Farhad Ashrafzadeh, Nadra Rafee, Payman Shamsollahi, and Huang Shu. The second author wishes to thank his graduate students at the University of Toronto who collaborated on the research on which this book is based and who made the work so enjoyable: Roger Avedon, Richard Cobden, Geir Dullerud, Freyja Kjartansdottir, Gary Leung, Tony Perry, and Eli Posner. The authors also thank the following people for suggestions, discussions, and collaboration: Abie Feintuch, Bernie Friedland, Toru Fujinaka, Tryphon Georgiou, Tomomichi Hagiwara, Pablo Iglesias, Pramod Khargonekar, Daniel Miller, Li Qiu, Gilbert Strang, and Kemin Zhou.

Various parts of this book in earlier drafts were presented in invited courses: The second author gave a short course at the Centro Internazionale Matematico Estivo, Como, Italy, during June, 1990; he is very grateful to Edoardo Mosca and Luciano Pandolfi for that opportunity. He also gave a course during the fall of 1990 in the Department of Electrical Engineering at the University of Minnesota; he is grateful to the Chairman, Mos Kaveh, and to Allen Tannenbaum for the invitation to do so. Both authors together with Jacob Apkarian gave a short course during May, 1992, at the Fields Institute; the authors thank the Deputy Director, Bill Shadwick, for that invitation. Finally, the second author repeated this short course during June, 1992, in the Department of Automation at Qinghua University, Beijing; for that opportunity he is grateful to the Vice-Chairman, Zheng Da-Zhong.

The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada.

Contents

1	Inti	oduction	1										
	1.1	Sampled-Data Systems	1										
	1.2	Approaches to SD Controller Design	8										
	1.3	Notation	10										
		Exercises	13										
		Notes and References	15										
Ι	In	direct Design Methods	17										
2	Ove	erview of Continuous-Time \mathcal{H}_2 - and \mathcal{H}_∞ -Optimal Control	19										
	2.1	Norms for Signals and Systems	19										
	2.2	\mathcal{H}_2 -Optimal Control	22										
	2.3	\mathcal{H}_{∞} -Optimal Control	29										
		Notes and References	32										
3	Discretization												
	3.1	Step-Invariant Transformation	33										
	3.2	Effect of Sampling	39										
	3.3	Step-Invariant Transformation Continued	44										
	3.4	Bilinear Transformation	53										
	3.5	Discretization Error	54										
		Exercises	59										
		Notes and References	64										
4	F.												
	4.1	Time-Domain Models	65										
	4.2	Frequency-Domain Models	69										
	4.3	Norms	72										
	4.4	Multivariable Systems	78										
	4.5	Function Spaces	83										

	4.6	Optimal Discretization of Analog Systems	88
		Exercises	90 94
			94
5		crete-Time Feedback Systems	95
	5.1	Connecting Subsystems	95
	5.2	Observer-Based Controllers	97
	5.3	Stabilization	103
	5.4	All Stabilizing Controllers	106
	5.5	Step Tracking	111
		Exercises	115
		Notes and References	120
6	Dis	crete-Time \mathcal{H}_2 -Optimal Control	121
	6.1	The LQR Problem	121
	6.2	Symplectic Pair and Generalized Eigenproblem	128
	6.3	Symplectic Pair and Riccati Equation	131
	6.4	State Feedback and Disturbance Feedforward	138
	6.5	Output Feedback	143
	6.6	\mathcal{H}_2 -Optimal Step Tracking	152
	6.7	Transfer Function Approach	160
		Exercises	163
		Notes and References	169
7	Inti	roduction to Discrete-Time \mathcal{H}_{∞} -Optimal Control	171
	7.1	Computing the \mathcal{H}_{∞} -Norm	171
	7.2	Discrete-Time \mathcal{H}_{∞} -Optimization by Bilinear Transformation .	176
		Exercises	180
		Notes and References	181
8	Fas	t Discretization of SD Feedback Systems	183
-	8.1	Lifting Discrete-Time Signals	183
	8.2	Lifting Discrete-Time Systems	185
	8.3	Fast Discretization of a SD System	186
	8.4	Design Examples	193
	8.5	Simulation of SD Systems	201
	8.5	Simulation of SD Systems	$\begin{array}{c} 201 \\ 203 \end{array}$

II	\mathbf{D}_{i}	rect SD Design	207
9	Pro	perties of S and H	209
	9.1	Review of Input-Output Stability of LTI Systems	209
	9.2	M. Riesz Convexity Theorem	210
	9.3	Boundedness of S and H	211
	9.4	Performance Recovery	216
		Exercises	219
		Notes and References	220
10	Con	tinuous Lifting	221
	10.1	Lifting Continuous-Time Signals	221
		Lifting Open-Loop Systems	223
		Lifting SD Feedback Systems	227
	10.4	Adjoint Operators	229
	10.5	The Norm of SG	232
		The Norm of <i>GH</i>	237
		Analysis of Sensor Noise Effect	239
		Exercises	242
		Notes and References	245
11	Stał	ility and Tracking in SD Systems	247
		Internal Stability	247
		Input-Output Stability	
		Robust Stability	258
		Step Tracking	262
		Digital Implementation and Step Tracking	
		Tracking Other Signals	271
		Exercises	276
		Notes and References	
10			
12		Deptimal SD Control	281
		A Simple \mathcal{H}_2 SD Problem	
		Generalized \mathcal{H}_2 Measure for Periodic Systems	
		Generalized \mathcal{H}_2 SD Problem	
		Examples	
		Exercises	$\frac{307}{307}$
			001
13		Optimal SD Control	309
		Frequency Response	310
		\mathcal{H}_{∞} -Norm in the Frequency Domain	
		\mathcal{H}_{∞} -Norm Characterization	
		\mathcal{H}_{∞} Discretization of SD Systems	
	13.5	Computing the $\mathcal{L}_2[0,h)$ -Induced Norm	320

	13.6 0	Computing	the Ma	atri	ces	3 i	n	G_{ϵ}	eq.,	d						•	•							326
	13.7 7	\mathcal{H}_{∞} SD Ana	alysis						•								•						•	336
	13.8 7	\mathcal{H}_{∞} SD Syn	thesis													•	•	•			•			341
]	Exercises .														•	•	•	•		•			345
	I	Notes and F	Referen	ces		•					•	•		•	•		•	•		•	•		•	347
A	State	e Models																						349
Bibliography														357										
In	dex																							369