Skip to main content

Bayesian Strategies for Machine Learning: Rule Extraction and Concept Detection

  • Conference paper
Neural Networks: Artificial Intelligence and Industrial Applications

Abstract

A Markov field represents dependencies in the form of an undirected graph and is a natural representation for specific types of knowledge, such as networks of concepts. A Bayesian learning algorithm is presented for inferring structure and parameters from a database of independent and identically distributed cases from the distribution. We use a conjugate family of prior distributions for model parameters conditional on connectivity structure, and the Bayesian Information Criterion to approximate the posterior probabilities for structures. The procedure is conceived for the general setting of experimental situations, where the correlation structure of a system of attributes has to be learned from examples. Correlations of order two and higher correspond to concepts. The graph induced by drawing cliques corresponding to the detected correlations and/or interactions provides information on the rules to be extracted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.J. Hopfield, “Neural networks and Physics systems with emergent collective computational abilities, Proceedings of the National Academy of Science, USA (1984): 2554–2558

    Google Scholar 

  2. L. Martignon, H.v. Hasseln, S. Grün, A. Aertsen and G. Palm, “Detecting higher order interactions among the spiking events in a group of neurons” to appear in Biological Cybernetics (1995)

    Google Scholar 

  3. G. Hinton, J. McClelland, D. Rumelhart.“Distributed Representations” Parallel distributed processing, D.Rumelhart and J. McClelland (eds) (The MIT Press, Cambridge, 1986 )

    Google Scholar 

  4. G. Hinton, T. Sejnowski,“Learning and relearning in Boltzmann machines”in Parallel distributed processing,D. Rumelhart and J. Mc Clelland (eds) ( The MIT Press, Cambridge, 1986 )

    Google Scholar 

  5. K.B. Laskey, “Adapting connectionist learning to Bayes networks”, International Journal of Approximate Reasoning, May (1990)

    Google Scholar 

  6. S. Amari, “Dualistic geometry of the Manifold of Higher—Order Neurons”, Neural Networks, 4, (1991), p. 443–451

    Article  Google Scholar 

  7. S. Amari, K. Kurata, and H. Nagaoka,“Information Geometry of Boltzmann machines”, IEEE Trans. Neural networks, 3, (1992) no. 2, p. 260–271

    Article  Google Scholar 

  8. S. Amari and T. SunHan, “Statistical Inference under Multiterminal Rate Restrictions: A Differential Geometric Approach”, IEEE Trans.Inf.Theory, 35, (1989), no. 2, p. 217–227

    Article  MATH  Google Scholar 

  9. Y. Bishop, S. Fienberg, and P. Holland, Discrete multivariate analysis: Theory and Practice, (The MIT Press, Cambridge, 1989)

    Google Scholar 

  10. R.E. Kass, A. Raftery, “Bayes factors and model uncertainty”,Carnegie Mellon University Dept. of Statistics, Technical Report Nr.571(1993)

    Google Scholar 

  11. M.H. de Groot, Optimal Statistical Decisions,(Mc.Graw Hill, New York,1970)

    Google Scholar 

  12. K.B. Laskey and L. Martignon, “ Bayesian Learning of Markov Fields Models”submitted to Neural Networks

    Google Scholar 

  13. W.B. Poland, and R. Schachter,“Three approaches to probability model selection”, Uncertainty in artificial intelligence:Proceedings of the tenth conference eds. R.Lopez de Mantara, and D.Poole (eds.)(Morgan Kaufman, San Mateo,1994)

    Google Scholar 

  14. S. Grün, A. Aertsen, M. Abeles, G. Gerstein, and G. Palm,“Behavior— related neuron group activity in the cortex”, Proc. 17th Ann. Meeting of the European neurosc. Ass.(Oxford University Press, ENA), (1994)

    Google Scholar 

  15. G. Cooper and E. Herskovits,“A Bayesian method for the induction of probabilistic networks from data”,Machine Learning 9 (1992),p. 309–347

    MATH  Google Scholar 

  16. D. Heckerman, D. Geiger, D. M. Chickering,“Learning Bayesian networks:The combination of knowledge and statistical data”,Artificial Intelligence“(to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag London Limited

About this paper

Cite this paper

Martignon, L., Laskey, K.B. (1995). Bayesian Strategies for Machine Learning: Rule Extraction and Concept Detection. In: Kappen, B., Gielen, S. (eds) Neural Networks: Artificial Intelligence and Industrial Applications. Springer, London. https://doi.org/10.1007/978-1-4471-3087-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3087-1_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-19992-2

  • Online ISBN: 978-1-4471-3087-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics