Skip to main content

A Connectionist Approach to Spatial Memory and Planning

  • Chapter

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

This chapter describes the design and testing of a biologically inspired vision-based model of spatial memory. Three theories of biological spatial memory are discussed. The Topological Network-map theory is translated into general principles, and two forms of connectionist implementation of these principles are discussed. This is followed by a discussion of planning and map-learning experiments performed with a robot. These experiments reveal problems with the implementation of the view-graph principle. The causes of these problems are discussed and solutions proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Althöfer K. (1996) “Neuro-Fuzzy Path Planning for Robotic Manipulators”, PhD Thesis, Dept. of Electronic and Electrical Engineering, King’s College London, Strand, London WC2R 2LS, UK

    Google Scholar 

  2. Altman J. (1995) “Deciding what to do next”, Trends in Neuroscience, 18, 117–118.

    Article  Google Scholar 

  3. Arbib M.A. and Lieblich I. (1977) “Motivational Learning of Spatial Behaviour”, in Metzler J., (ed) “Systems Neuroscience”, Academic Press, New York, pp. 221–239. (a more accessible reference may be Lieblich and Arbib, 1982)

    Google Scholar 

  4. Bachelder I.A. and Waxman A.M. (1995) “A View-Based Neurocomputational System for Relational Map-Making and Navigation in Visual Environments”, Robotics and Autonomous Systems, 16, pp. 267–289.

    Article  Google Scholar 

  5. Barto A.G., Bradtke S.J. and Singh S.P. (1995) “Learning to Act using Real-Time Dynamic Programming”, Artificial Intelligence, 72, 81–138.

    Article  Google Scholar 

  6. Blades M. (1990) “The Reliability of Data Collected from Sketch Maps”, J. of Environmental Psychology, 10, pp. 327339.

    Google Scholar 

  7. Brooks R.A. (1986) “A Robust Layered Control System for a Mobile Robot”, IEEE Journal of Robotics an Automation, RA2, pp. 14–23.

    Article  MathSciNet  Google Scholar 

  8. Buehlmeier A., Duerer H., Monnerjahn J., Noelte M. and Nehmzow U. (1996) “Learning by Tuition, Experiments with the Manchester ‘FortyTwo’”, University of Manchester, Computer Science Technical Report Series, UMCS-96–1-2, Can be downloaded from: ftp://ftp.cs.man.ac.Uk/pub/TR/UMCS-96–1-2.ps.Z

    Google Scholar 

  9. Bugmann G., Taylor J.G. and Denham M.J. (1994) “Sensory and Memory Based Path Planning in the Egocentric Reference Frame of an Autonomous Mobile Robot” Research Report NRG-94–01, School of Computing, University of Plymouth, Plymouth PL4 8AA, UK. http://www.tech.plym.ac.uk/soc/research/neural/neur20/publicat/papers/nrg9401.zip

    Google Scholar 

  10. Bugmann G., Taylor J.G. and Denham M.J. (1995) “Route finding using Neural Nets”, in Taylor J.G (ed) “Neural Networks”, Alfred Waller Ltd, Henley-on-Thames, pp. 217–230.

    Google Scholar 

  11. Bugmann G. (1997) “Biologically Plausible Neurocomputation”, Biosystems, 40, 11–19.

    Article  Google Scholar 

  12. Burgess N. Recce M. and O’Keefe J. (1995) “Hippocampus: Spatial Models”, in Arbib M.A. (ed) “The handbook of Brain Theory and Neural Networks”, Bradford Books/MIT Press, pp. 468–472

    Google Scholar 

  13. Burgess N. and O’Keefe J. (1996) “Neural Computation Underlying the Firing of Place Cells and their Role in Navigation”, Hippocampus. 6, pp. 749–762.

    Article  Google Scholar 

  14. Byrne R. (1979) “Memory for urban geography”, Quarterly Journal of Experimental Psychology, 31, 147–154.

    Article  Google Scholar 

  15. Connoly C.I. and Burns J.B. (1993) “A Model of the Functioning of the Striatum”, Biological Cybernetics, 68, pp. 535–544.

    Article  Google Scholar 

  16. Cox I.J. (1991) “Blanche — An experiment in Guidance and Navigation of an Autonomous Robot Vehicule”, IEEE Transactions on Robotics and Automation, 7, pp 193–204.

    Article  Google Scholar 

  17. Curran T. (1995) “On the neural Mechanisms of Sequence Learning”, Psyche, Vol. 2 (online journal: http://psyche.cs.monash.edu.au/volume2–1/psyche-95–2-12 sequence-1-curran.html).

    Google Scholar 

  18. Denham M.J. and McCabe S.L. (1995) “Robot control using temporal sequence learning”, Proc World Congress on Neural Networks (WCNN’95), Washington DC, USA, July 1995, INNS Press/Lawrence Erlbaum Associates, vol 2, pp 346–349.

    Google Scholar 

  19. Denham M.J. and McCabe S.L. (1996) “Biological basis for a neural model of learning and recall of goal-directed sensory-motor behaviours”, Proc World Congress on Neural Networks (WCNN’96), San Diego, USA, September 1996, INNS Press/Lawrence Erlbaum Associates, pp. 1283–1286.

    Google Scholar 

  20. Evans G.W., Marrero D.G. and Butler P.A. (1981) “Environmental Learning and Cognitive Mapping”, Environment and Behaviour, 13, pp. 83–104.

    Article  Google Scholar 

  21. Ferguson E.L. and Hegarty M. (1994) “Properties of Cognitive Maps Constructed from Texts”, Memory and Cognition, 22, pp. 455–473.

    Article  Google Scholar 

  22. Franz M.O., Schölkopf B., Georg P., Mallot H.A., and Bülthoff H.H. (1996) “Learning View Graphs for Robot Navigation”, Technical Report no 33, Max-Planck Institute für Biologische Kybernetik, 72076 Tübingen, Germany. Can be downloaded from the website: http://www.mpiktueb.mpg.de/projects/techr/list3.html

    Google Scholar 

  23. Gaussier P. and Zrehen S. (1995) “PerAc: A neural Architecture to Control Artificial Animals”, Robotics and Autonomous Systems, 16, pp. 291–320.

    Article  Google Scholar 

  24. Gaussier P. and Zrehen S. (1994) “A topological Neural Map for OnLine Learning: Emergence of Obstacle Avoidance in a Mobile Robot”, Proc SAB’94 (Brighton, UK), pp. 282–290.

    Google Scholar 

  25. Gaussier P., Joulain C., Revel A. and Banquet J.-P. (1996) “Are Shaping Techniques the Correct Answer for the Control of Visually Guided Robots?”, Proc. Control’96 (Exeter, UK), IEE Publ. London, pp. 1248–1252.

    Google Scholar 

  26. Gaussier P., Joulain C., S. Zrehen, Banquet J.-P. and Revel A. (1997) “Visual Navigation in an Open Environment without Map”, Submitted to IROS’97, Grenoble.

    Google Scholar 

  27. Glasius R., Komoda A. and Gielen S. (1996) “A biologically Inspired Neural Net for Trajectory Formation and Obstacle Avoidance”, Biological Cybernetics, 84, pp. 511–520.

    Article  Google Scholar 

  28. Gray J.A. (1995) “The contents of consciousness: A neurophysiological Conjecture”, Behavioural and Brain Science, 18, pp. 659–676

    Article  Google Scholar 

  29. Hull C.L. (1932) “The goal Gradient Hypothesis and Maze Learning”, Psychological Review, 39, pp. 25–43.

    Article  Google Scholar 

  30. Hull C.L. (1934) “The Concept of Habit-Family Hierarchy and Maze Learning”, Psychological Review, 41, pp. 33–52.

    Article  Google Scholar 

  31. Hull C.L. (1935) “The Mechanism of the Assembly of Behavior Segments in Novel Combinations suitable for Problem Solution”, Psychological Review, 42, pp. 219–245.

    Article  Google Scholar 

  32. Huttenlocher J. and Newcombe N. (1984) “The Child’s Representation of Information about Location”, in Sophian C. (ed) “Origin of Cognitive Skills”, Lawrence Erlbaum Associates, NJ, pp. 81–111.

    Google Scholar 

  33. Jeannerod M. (1994) “The Representing Brain: Neural Correlates of Motor Intention and Imagery”, BBS, 17, pp. 187–202.

    Google Scholar 

  34. Joulain C., Gaussier P. and Revel A. (1996) “Apprentissage de Catégories Sensory Motrices par un Robot Autonome” Research Report ENSEA/ETIS, Paris. Can be downloaded from: http://bunny.ensea.fr/Pages_Perso/Arnaud_Revel/articles/nsi2.ps

    Google Scholar 

  35. Kohonen T. (1988) “Self-Organisation and Associative Memory”, Springer Verlag, Berlin

    Google Scholar 

  36. Kortenkamp D., Huber M., Cohen C., Raschke U., Bidlack C., Bates Congdon C., Koss F. and Weymouth T. (1993) “Integrated Mobile-Robot Design (Winning the AAAF92 Robot Competition)”, IEEE Expert, 8, pp. 61–73.

    Article  Google Scholar 

  37. Latombe J.C. (1991) “Robot motion Planning”, Kluwer Academic Publ.

    Book  Google Scholar 

  38. Lejeune H. and Wearden J.H. (1991) “The Comparative Psychology of Fixed-Interval Responding: Some Quantitative Analyses”, Learning and Motivation, 22, pp. 84–111.

    Article  Google Scholar 

  39. Levine M., Jankovic I.N., Palij M. (1982) “Principle of Spatial Problem Solving”, Journal of Experimental Psychology: General, 111, pp. 157–175.

    Article  Google Scholar 

  40. Lieblich I. and Arbib M.A. (1982) “Multiple Representations of Space”, The Behavioral and Brain Sciences, 5, 627–659.

    Article  Google Scholar 

  41. Maes P. (189) “How to do the right Thing”, Connection Science, 1, pp. 291–323.

    Google Scholar 

  42. Maguire E.A., Frackowiak, R.S.J. and Frith C.D. (1997a) “Learning to find your way — a role for the human hippocampal region”, submitted.

    Google Scholar 

  43. Maguire E.A., Burgess N., Donnett J.G., O’Keefe J. and Frith CD. (1997b) “Knowing where things are: Parahippocampal involvement in encoding object locations in virtual large-scale space”, Submitted.

    Google Scholar 

  44. Mallot H.A., Bülthoff H.H., Georg P., Schölkopf B. and Yasuhara K. (1995) “View-Based Cognitive Map Learning by an Autonomous Robot”, Proc. ICANN’95 (Paris), Vol. 2, pp. 381–386. A number of papers related to this work can be retrieved at the following website: http://www.mpik tueb.mpg.de/projects/navigation/navigation.html

    Google Scholar 

  45. Mataric M.J. (1990) “Navigating with a Rat Brain”, Proc. of Simulation of Adaptive Behavior: From Animals to Animats (SAB’90), MIT Press Bradford Books, pp. 169–175.

    Google Scholar 

  46. Mellet E., Tzourio N., Denis M., and Mazoyer B. (1995) “A positron Emission Tomography Study of Visual and Mental Spatial Exploration”, J. of Cognitive Neuroscience, 7, pp. 433–445.

    Article  Google Scholar 

  47. Mellet E., Tzourio N., Crivello F., Joliot M., Denis M., and Mazoyer B. (1996) “Functional Imagery of Spatial Mental Images Generated from verbal Instructions”, J. of Neuroscience, 16, pp. 6504–6512.

    Google Scholar 

  48. Menzel E.W. (1973) “Chimpanzee Spatial Memory Organisation”, Science, 182, pp. 943–945.

    Article  Google Scholar 

  49. Moar I. and Carleton L.R. (1982) “Memory for routes”, Quarterly Journal of Experimental Psychology, 35, pp. 381–394.

    Google Scholar 

  50. Muller R.U., Stead M. and Pach J. (1996) “The Hippocampus as a Cognitive Graph”, J. Gen. Physiol., 107, pp. 663–694.

    Article  Google Scholar 

  51. McNamara T.P., Hardy J.K. and Hirtle S.C. (1989) “Subjective Hierarchies in Spatial Memory”, J. of Experimental Psychology: Learning, Memory and Cognition, 15, pp. 211–227.

    Article  Google Scholar 

  52. McNaughton (1989) “Neural Mechanisms for Spatial Computation and Information Storage”, in: Nadel L., Cooper L.A., Culicover P. and Harnish R.M. (eds) “Neural Connections, Mental Computation”, MIT Press, Cambridge MA, USA, pp. 285–350.

    Google Scholar 

  53. McNaughton B.L. and Nadel L. (1990) “Hebb-Marr Networks and the Neurobiological Representation of Action in Space”, In Gluck M.A. and Rumelhart D.E. (eds) “Neuroscience and Connectionist Theory”, Lawrence Erlbaum Associates, Hillsdale NJ, USA, pp. 1–63.

    Google Scholar 

  54. Newell A. and Simon H.A. (1972) “Human problem Solving”, Prentice Hall, Inc, Englewood Cliffs, NJ

    Google Scholar 

  55. O’Keefe J. and Nadel L. (1978) “The Hippocampus as a Cognitive Map”, Clarendon Press, Oxford.

    Google Scholar 

  56. O’Keefe J. and Speakman A. (1987) “Single Unit Activity in the Rat Hippocampus during a Spatial Memory Task”, Experimental Brain Research, 68, pp. 1–27.

    Google Scholar 

  57. O’Keefe J, (1991) “An Allocentric Spatial Model for the Hippocampal Cognitive Map”, Hippocampus, 1, pp. 230–235.

    Article  Google Scholar 

  58. Onillon V., Bugmann G., Simpson A. and Nurse P. (1995) “Artificial vision for micromouse” Research Report NRG-95–05, School of Computing, University of Plymouth, Plymouth PL4 8AA, UK, can be downloaded from http://www.tech.plym.ac.uk/soc/research/neural/

    Google Scholar 

  59. Peruch P., Giraudo M-D. and Gäling T. (1989) “Distance Cognition by Taxi Drivers and the General Public”, J. of Environmental Psychology, 9, pp. 233–239.

    Article  Google Scholar 

  60. Presson C., DeLange N. and Hazelrigg M. (1989) “Orientation Specificity in Spatial Memory: What Makes a Path Different Prom a Map of the Path?”, Journal of Experimental Psychology: Learning, Memory, and Cognition., 15, pp. 887–897.

    Article  Google Scholar 

  61. Rao R.P.N. and Fuentes O. (1996) “Learning Navigational Behavior using a Predictive Sparse Distributed Memory”, To appear in “Proc. from Animals to Animats’96: The Fourth International Conference on Simulation of Adaptive Behavior”, MIT Press

    Google Scholar 

  62. Recce M. and Harris K.D. (1996) “Memory for places; A navigation model in support of Marr’s Theory of hippocampal function”, Hippocampus, 6, pp. 735–748.

    Article  Google Scholar 

  63. Rieser J.J. (1989) “Access to Knowledge of Spatial Structure at Novel Point of Observation”, Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, pp. 1157–1165.

    Article  Google Scholar 

  64. Röfer T. (1997) “Controlling a wheelchair with image based homing”, in N. Sharkey and U. Nehmzow (eds.) “Spatial Reasoning in Mobile Robots and Animals”, University of Manchester Technical Report UMCS-97–4-1

    Google Scholar 

  65. Rolls E.T. (1996) “The representation of space in the primate hippocampus, and its role in memory”, in Ishikawa K., McGaugh J.L. and Sakata H. (eds) “Brain Processes and Memory”, Elsevier: Amsterdam, pp. 203–227.

    Google Scholar 

  66. Sadalla E.K. and Magel S.G. (1980) “The perception of travelled distance”, Environment and Behaviour, 12, pp. 65–79.

    Article  Google Scholar 

  67. Schmajuk N.A., Thieme A.D. and Blair H.T. (1993) “Maps, Routes and the Hippocampus: A neural Network Approach”, Hippocampus, 3, pp. 387–400.

    Article  Google Scholar 

  68. Siemiatkowska B. (1994) “Cellular Neural Networks for Mobile Robot Navigation”, Proc. 3rd Int. Conf. on Cellular Neural Networks and their Applications (CNNA94), Rome, Italy, pp. 285–290.

    Google Scholar 

  69. Shallice T. (1988) “From Neuropsychology to mental Structure”, Cambridge University Press, Cambridge, UK. (see section 14.6 on planning and frontal lobe lesions).

    Book  Google Scholar 

  70. Schölkopf B. and Mallot H.A. (1994) “View-Based Cognitive Mapping and Path Planning”, Technical Report no 7, Max Planck Institute für Biologische Kybernetik, 72076 Tübingen, Germany. Can be downloaded from: http://www.mpik-tueb.mpg.de/projects/techr/listl.html

    Google Scholar 

  71. Also availbable as: Schölkopf, B. and H.A. Mallot (1995) “View-based cognitive mapping and path planning.”, Adaptive Behavior 3, pp. 311–348.

    Article  Google Scholar 

  72. Speakman A. (1987) “Place cells in the brain: Evidence for a cognitive map”, Sci. prog., Oxf., 71, pp. 511–530.

    Google Scholar 

  73. Spence K.W. (1950) “Cognitive Versus Stimulus-Response Theories of Learning”, Psychological Review, 57, pp. 159–172.

    Article  Google Scholar 

  74. Tesauro G.J. (1995) “Temporal difference learning and TD Gammon”, Communication of the ACM, 38, pp. 58–68.

    Article  Google Scholar 

  75. Thompson J.A. (1980) “How doe we use visual information to control locomotion”, Trends in Neuroscience, October 1980, pp. 247–250.

    Google Scholar 

  76. Thorndyke P.W. and Hayes-Roth B. (1982) “Differences in Spatial Knowledge Acquired from Maps and Navigation”, Cognitive Psychology, 14, pp. 560–589.

    Article  Google Scholar 

  77. Thrun S. (1996) “A Bayesian Approach to Landmark Discovery and Active Perception in Mobile Robot Navigation”, Technical Report CMU-CS-96–122, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  78. Thrun S. and Bücken A. (1996) “Learning Maps for Indoor Mobile Robot Navigation”, Technical Report CMU-CS-96–121, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  79. Tolman E.G. (1948) “Cognitive maps in Rats and Men”, Psychological Review, 55, pp. 189–208.

    Article  Google Scholar 

  80. Touretzky D.S., Wan H.S. and Redish A.D. (1994) “Neural Representation of Space in Rats and Robots”, in Zurada J.M., Marks R.J. and Robinson C.J. (eds) “Computational Intelligence: Imitating Life”, IEEE, pp. 57–68.

    Google Scholar 

  81. Tversky B. (1992) “Distortions in cognitive maps”, Geoforum, 23, pp. 131–138.

    Article  Google Scholar 

  82. Vann Bugmann D. (1995) “Human Spatial Memory: A Study of Cognitive Distance”, Research report, Department of Psychology, University of Plymouth, UK.

    Google Scholar 

  83. Verschure P.F.M.J., Kröse B.J.A. and Pfeifer R. (1992) “Distributed Adaptive Control: The Self-organization of Structured Behaviour”, Robotics and Autonomous Systems, 9, pp. 181–196.

    Article  Google Scholar 

  84. Verschure P.F.M.J., Wray J. Sporns O., Tononi G. and Edelman G.M. (1995) “Multilevel Analysis of Classical Conditioning in a Behaving Real World Artefact”, Robotics and Autonomous Systems, 16, pp. 247–265.

    Article  Google Scholar 

  85. Ward A.K., Newcombe N. and Overton W.F. (1986) “Turn Left at The Church, or Three Miles North: A Study of Direction Giving and Sex Differences”, Environment and Behaviour, 18, pp. 192–213.

    Article  Google Scholar 

  86. Watkins C.J.C.H. and Dayan P. “Q-Learning”, Machine Learning, 8, pp. 279–292.

    Google Scholar 

  87. Webb B. (1995) “Using Robots to Model Animals: a Cricket Test”, Robotics and Autonomous Systems, 16, pp. 117–134.

    Article  Google Scholar 

  88. Wehner R., Michel B. and Antonsen P. (1996) “Visual Navigation in Insects: Coupling of Egocentric and Geocentric Information”, Journal of Experimental Biology, 199, pp. 129–140.

    Google Scholar 

  89. Whishaw I.Q. (1991) “Latent Learning in a Swimming Pool Place Task by Rats: Evidence of the Use of Associative and Not Cognitive Mapping Processes”, The Quarterly J. of Experimental Psychology, 43B, pp. 83–103.

    Google Scholar 

  90. Whitehead S.D. and Ballard D.H. (1991) “Learning to Perceive and Act by Trial and Error”, Machine Learning, 7, pp. 45–83.

    Google Scholar 

  91. Yamauchi B. and Langley P. (1997) “Place Learning in Dynamic Real-World Environments”, Intl. Workshop on Learning in Autonomous Robots (RobotLearn’96), May 19–20, Key west, Florida, pp. 123–129. (http://www.cs.buffalo.edu/~hexmoor/robolearn96/workshop.html).

    Google Scholar 

  92. Possibly more accessible: Yamauchi B. and Langley P. (1997) “Place recognition in dynamic environments” J. of Robotics System, 14, pp. 107–120.

    Article  MATH  Google Scholar 

  93. Zimmer U.R (1996) “Robust World-Modelling and Navigation in a Real World”, Neurocomputing, 13, pp. 247–260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bugmann, G. (1998). A Connectionist Approach to Spatial Memory and Planning. In: Landau, L.J., Taylor, J.G. (eds) Concepts for Neural Networks. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-3427-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3427-5_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-76163-1

  • Online ISBN: 978-1-4471-3427-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics