Skip to main content

An Introduction to the IrisCode Theory

  • Chapter
  • First Online:
Handbook of Iris Recognition

Abstract

IrisCode is the most successful iris recognition method. Developed for over 18 years, IrisCode still dominates the market even though numerous iris recognition algorithms have been proposed in the academics. Currently, more than 60 million people have been mathematically enrolled by this algorithm. Its computational advantages, including high matching speed, predictable false acceptance rates, and robustness against local brightness and contrast variations, play a significant role in its commercial success. To further these computational advantages, researchers have modified this algorithm to enhance iris recognition performance and recognize other biometric traits (e.g., palm print). Many scientific papers on iris recognition have been published, but its theory is almost completely ignored. In this chapter, we will report our most recent theoretical work on the IrisCode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, IrisCode is used interchangeably for both the method and features of iris recognition developed by Daugman. Recently, this method has also been dubbed the Daugman algorithm.

References

  1. Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  2. Daugman, J.: How iris recognition works. IEEE Trans. Circuit. Syst. Video Technol. 14(1), 21–30 (2004)

    Article  Google Scholar 

  3. Daugman, J.: Probing the uniqueness and randomness of IrisCode: results from 200 billion iris cross-comparisons. Proc. IEEE 94, 11 (2006)

    Article  Google Scholar 

  4. Yao, P., Li, J., Ye, X., Zhuang, Z., Li, B.: An analysis and improvement of an iris identification algorithm. Proceeding of the 18th ICPR vol. 4, pp. 362–365. IEEE, Piscataway, NJ (2006)

    Google Scholar 

  5. Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: The best bits in an iris code. TPAMI 31(6), 964–973 (2009)

    Article  Google Scholar 

  6. Masek, L.: Recognition of human iris patterns for biometric identification. Bachelor thesis, The University of Western Australia

    Google Scholar 

  7. Kong, A.W.K.: Palmprint identification based on generalization of IrisCode. PhD thesis, University of Waterloo (2007)

    Google Scholar 

  8. Kong, A.: An analysis of Gabor detection. International Conference on Image Analysis and Recognition (ICIAR), Halifax, Canada, 6–8 July 2009

    Google Scholar 

  9. Kong, A.W.K., Zhang, D., Kamel, M.: An analysis of IrisCode. IEEE Trans. Image Process. 19(2), 522–532 (2010)

    Article  MathSciNet  Google Scholar 

  10. Kong, A.W.K., Zhang, D., Kamel, M.: Palmprint identification using feature-level fusion. Pattern Recognit. 39, 478–487 (2006)

    Article  MATH  Google Scholar 

  11. Zhang, D., Kong, W.K., You, J., Wong, M.: On-line palmprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1041–1050 (2003)

    Article  Google Scholar 

  12. Kong, A.W.K., Zhang, D., Kamel, M.: An analysis of brute-force break-ins of a palmprint authentication system. IEEE Trans. Syst. Man and Cybern. Part B 36(5), 1201–1205 (2006)

    Article  Google Scholar 

  13. Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Process. 13(6), 739–750 (2004)

    Article  Google Scholar 

  14. Krichen, E., Mellakh, M.A., Garcia-Salicetti, S., Dorizzi, B.: Iris identification using wavelet packets. Proc. Int. Conf. Pattern Recognit. 4, 226–338 (2004)

    Google Scholar 

  15. Noh, S.I., Bae, K., Park, Y., Kim, J.: A Novel Method to Extract Features for Iris Recognition System. Lecture Notes in Computer Science, vol. 2688, pp. 861–868. Springer, Berlin (2003)

    Google Scholar 

  16. Bea, K., Noh, S., Kim, J.: Iris Feature Extraction Using Independent Component Analysis. Lecture Notes in Computer Science, vol. 2688, pp. 838–844. Springer, Berlin (2003)

    Google Scholar 

  17. Zhang, P.F., Li, D.S., Wang, Q.: A novel iris recognition method based on feature fusion. In: Proceedings of the Third International Conference on Machine Learning and Cybernetics, pp. 26–29. IEEE, Piscataway, NJ (2004)

    Google Scholar 

  18. Ea, T., Valentian, A., Rossant, F., Amiel, F. Amara, A.: Algorithm implementation for iris identification. In: Proceeding of 48th Midwest Symposium on Circuits and Systems, pp. 1207–1210. IEEE, Piscataway, NJ (2005)

    Google Scholar 

  19. Park, C.H., Lee, J.J., Oh, S.K., Song, Y.C., Choi, D.H., Park, K.H.: Iris Feature Extraction and Matching Based on Multiscale and Directional Image Representation. LNCS, vol. 2695, pp. 576–583. Springer, Berlin (2004)

    Google Scholar 

  20. Rydgren, E., Amiel, T.E.A.F., Rossant, F., Amara, A.: Iris features extraction using wavelet packets. Proc. Int. Conf. Image Process. 2, 861–864 (2004)

    Google Scholar 

Download references

Acknowledgments

We would like to thank CASIA for sharing their database. This work is partially supported by the Ministry of Education, Singapore, through AcRF Tier 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adams Wai Kin Kong .

Editor information

Editors and Affiliations

Appendices

Appendices

16.1.1 Appendix A

This appendix proves that \( \left\| {{{M}_R}} \right\| = \left\| {{{M}_I}} \right\| \) when \( k\to \infty \),where \( k = \omega \beta \).

Considering \( {{\left\| {{{M}_R}} \right\|}^2} - {{\left\| {{{M}_I}} \right\|}^2} \)

$$ = \int {{{{\int {\left( {{{e}^{{ - \frac{{{{\rho}^2}}}{{{{\alpha}^2}}}}}}{{e}^{{ - \frac{{{{\varphi}^2}}}{{{{\beta}^2}}}}}}\cos \left( {\omega \varphi } \right)} \right)} }}^2}\textit{d}\,\,\rho \textit{d}\varphi - } \int {{{{\int {\left( {{{e}^{{ - \frac{{{{\rho}^2}}}{{{{\alpha}^2}}}}}}{{e}^{{ - \frac{{{{\varphi}^2}}}{{{{\beta}^2}}}}}}\sin \left( {\omega \varphi } \right)} \right)} }}^2}\textit{d}\,\,\rho \textit{d}\varphi } $$
$$ = \int {\int {{{e}^{{ - \frac{{2{{\rho}^2}}}{{{{\alpha}^2}}}}}}{{e}^{{ - \frac{{2{{\varphi}^2}}}{{{{\beta}^2}}}}}}\left( {{{{\cos }}^2}\left( {\omega \varphi } \right) - {{{\sin }}^2}\left( {\omega \varphi } \right)} \right)\textit{d}\,\,\rho \textit{d}\varphi } } $$
$$ = \int {{{e}^{{ - \frac{{2{{\rho}^2}}}{{{{\alpha}^2}}}}}}} \textit{d}\,\,\rho \int {{{e}^{{ - \frac{{2{{\varphi}^2}}}{{{{\beta}^2}}}}}}\left( {{{{\cos }}^2}\left( {\omega \varphi } \right) - {{{\sin }}^2}\left( {\omega \varphi } \right)} \right)\textit{d}\varphi } $$
$$ = \frac{{\alpha \sqrt {{2\pi }} }}{2}\int {{{e}^{{ - \frac{{2{{\varphi}^2}}}{{{{\beta}^2}}}}}}\left( {{{{\cos }}^2}\left( {\omega \varphi } \right) - {{{\sin }}^2}\left( {\omega \varphi } \right)} \right)\textit{d}\varphi } $$

Let \( \gamma = \frac{k}{\beta}\varphi \). Thus,

$$ = \frac{{\alpha \beta \sqrt {{2\pi }} }}{{2k}}\int {{{e}^{{ - \frac{{2{{\gamma}^2}}}{{{{k}^2}}}}}}\left( {{{{\cos }}^2}\left( \gamma \right) - {{{\sin }}^2}\left( \gamma \right)} \right)\textit{d}\gamma } $$
$$ = \frac{{\alpha \beta \sqrt {{2\pi }} }}{{2k}}\int {{{e}^{{ - \frac{{2{{\gamma}^2}}}{{{{k}^2}}}}}}\cos \left( {2\gamma } \right)\textit{d}\gamma } $$

Let \( 2\gamma = \tau \)

$$ = \frac{{\alpha \beta \sqrt {{2\pi }} }}{{4k}}\int {{{e}^{{ - \frac{{{{\tau}^2}}}{{2{{k}^2}}}}}}\cos \left( \tau \right)\textit{d}\tau } $$
$$ = \frac{{\alpha \beta \sqrt {{2\pi }} }}{{4k}}\sqrt {{2\pi }} k{{e}^{{ - \frac{{{{k}^2}}}{2}}}} $$
$$ = \frac{1}{2}\alpha \beta \pi {{e}^{{ - \frac{{{{k}^2}}}{2}}}}. $$

\( {{\left\| {{{M}_R}} \right\|}^2} - {{\left\| {{{M}_I}} \right\|}^2} \) is always greater than zero because \( \alpha \), \( \beta \), and \( k \) are greater than zero. Note that \( \mathop{{\lim }}\limits_{{k\to \infty }} \left( {{{{\left\| {{{M}_R}} \right\|}}^2} - {{{\left\| {{{M}_I}} \right\|}}^2}} \right) = \mathop{{\lim }}\limits_{{k\to \infty }} \frac{1}{2}\alpha \beta \pi {{e}^{{ - \frac{{{{k}^2}}}{2}}}} = 0 \).

16.1.2 Appendix B

This appendix shows that the phase distance can be calculated through bitwise hamming distance.

Let two winning indexes be j − 1 and j − 1 + k, where \( 1 \leq j \leq j + k < 2n \). Their phase distance is \( \min (k,\;2n - k) \). By using the coding scheme given in Fig. 16.4, they are represented by the jth and j + kth column vectors of matrix B. We would like to prove that

$$ \sum\limits_{{i = 1}}^n {{{b}_{{i,j}}}\otimes {{b}_{{i,j + k}}}} = \min \left( {k,\;2n - k} \right). $$

Because all b i,j are either one or zero, \( \sum\nolimits_{{i = 1}}^n {{{b}_{{i,j}}}\otimes {{b}_{{i,j + h}}}} = \sum\nolimits_{{i = 1}}^n {{{b}_{{i,j}}} - {{b}_{{i,j + k}}}} \).

Case 1::

If \( j \leq n \) and \( j + k \leq n \):

From the definition of A, we know \( \sum\nolimits_{{i = 1}}^n {\left| {{{b}_{{i,j}}} - {{b}_{{i,j + k}}}} \right| = k} \).

Case 2::

If \( j > n \) and \( j + k > n \):

As in Case 1, we know \( \sum\nolimits_{{i = 1}}^n {\left| {{{b}_{{i,j}}} - {{b}_{{i,j + k}}}} \right| = k} \).

Case 3::

If \( j \leq n \) and \( j + k > n \) and \( k \leq n \):

$$ \mathrm{Consider}\quad {{b}_{{i,j}}} = 1\quad \mathrm{and}\quad {{b}_{{i,j + k}}} = 1. $$
(16.20)

From the definition of A, we have \( 1 \leq i < j \) and \( j + k - n \leq i \leq n \).

Then, \( j + k - n \leq i < j \).

The number of i that satisfies condition (16.20) is

$$ \max \left( {0,\;j - \left( {j + k - n} \right)} \right). $$
(16.21)

Since \( k \leq n \), \( \max \left( {0,\;j - \left( {j + k - n} \right)} \right) = n - k \).

$$ \mathrm{Consider}\quad {{b}_{{i,j}}} = 0\quad \mathrm{and}\quad {{b}_{{i,j + k}}} = 0. $$
(16.22)

From the definition of A, we have \( i \geq j \) and \( i < j + k - n \).

Then \( j \leq i < j + k - n \).

The number of i that satisfies condition (16.22) is

$$ \max \left( {0,\;j + k - n - j} \right). $$
(16.23)

Since \( k \leq n \), \( \max \left( {0,\;k - n} \right) \)=0.

Thus, \( \sum\nolimits_{{i = 1}}^n {\left| {{{b}_{{i,j}}} - {{b}_{{i,j + k}}}} \right|} = n - \left( {n - k} \right) = k \).

Case 4::

If \( j \leq n \) and \( j + k > n \) and \( k > n \):

$$ \mathrm{Consider}\quad {{b}_{{i,j}}} = 1\quad \mathrm{and}\quad {{b}_{{i,j + k}}} = 1. $$
(16.24)

From (16.21), the number of i that satisfies condition (16.24) is \( \max \left( 0,\;j\ - \right. \) \( \left.\left( {j + k - n} \right)\right) \).

Since \( k > n \), \( \max \left( {0,\;n - k} \right) = 0 \).

$$ \mathrm{Consider}\quad {{b}_{{i,j}}} = 0\quad \mathrm{and}\quad {{b}_{{i,j + k}}} = 0. $$
(16.25)

From (16.23), the number of i that satisfies condition (16.25) is \( \max \left( 0,\;j + \right. \) \( \left. k - n - j \right) \).

Since k > n, \( \max \left( {0,\;k - n} \right) = k - n \).

Thus, \( \sum\nolimits_{{i = 1}}^n {\left| {{{b}_{{i,j}}} - {{b}_{{i,j + k}}}} \right|} = n - (k - n) = 2n - k \).

Thus, \( \sum\nolimits_{{i = 1}}^n {{{b}_{{i,j}}}\otimes {{b}_{{i,j + k}}}} = k \) for Cases 1–3, and \( \sum\nolimits_{{i = 1}}^n {{{b}_{{i,j}}}\otimes {{b}_{{i,j + k}}}} = 2n - k \) for Case 4. Since \( 2n - k \geq k \) for Cases 1–3 and \( 2n - k < k \) for Case 4, \( \sum\nolimits_{{i = 1}}^n {{{b}_{{i,j}}}\otimes {{b}_{{i,j + k}}}} = \min \left( {k,\;2n - k} \right). \)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kong, A.W.K., Zhang, D., Kamel, M. (2013). An Introduction to the IrisCode Theory. In: Burge, M., Bowyer, K. (eds) Handbook of Iris Recognition. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4402-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4402-1_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4401-4

  • Online ISBN: 978-1-4471-4402-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics