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Abstract This chapter presents an overview of the latest artistic portrait rendering
techniques. Artistic rendering or portraits can be viewed as an image generating pro-
cess controlled by two factors. The first one is the face fidelity, namely, a rendered
portrait image should preserve a certain amount of the original face’s information.
The second factor is the artistic style, for example, sketch, painting, etc. In the liter-
ature, different portrait rendering algorithms either adopt different models and data
structures to represent the facial information, or use different graphical elements
and compositional methods to simulate various styles. These two factors essentially
reveal the two principles in portraiture, namely the pursuit of likeness and aesthetic.

1 Introduction

Portraiture, which creates artistic representations of the appearances and expressions
of human faces, is one of the oldest yet popular genres in visual arts. Generally there
are two essential factors to consider in creating a portrait.

• The first factor is the face fidelity, namely, a portrait should preserve a certain
amount of the original face’s information, to ensure that not only can it be recog-
nized as a face picture but there is an appropriate level of similarity in perception
of the appearance or character between the person in the portrait and the person
him/herself or in a photograph.
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• The second factor is the artistic style of the portrait picture, for example, sketch,
painting, paper-cut, caricature, etc. These styles/forms provide unique dictionar-
ies of visual elements to express the various facial structures and appearances.

These two factors vary with different ages and genres of portraiture, revealing its
two principles, namely the pursuit of likeness and aesthetic, respectively. For exam-
ple, before the invention of photography in the 19th century, the mainstream artists
used to pursue accurate likeness by studying the structure of bones and muscles
beneath the facial skin, practicing their skills on depicting them, developing pig-
ments made from various materials, and even using external tools such as mirrors
and pinhole imaging to improve the fidelity. Nowadays, with the popularity of dig-
ital cameras, perfect fidelity is easily available, but many modern portraits usually
depict only rough or even distorted likeness while resorting to new artistic styles and
techniques to evoke strong psychological and emotional reactions in the audience,
to demonstrate the sense of aesthetic.

These two factors/principles also apply to artistic rendering of portraits — the
simulation of portraiture on the computer. From an image analysis and synthesis
perspective, let W denote the facial information and ∆ denote the elements to com-
posite an image, then a natural image (photograph) IN is generated with

IN = f (WN;∆N), (1)

and in a similar way, an artistic portrait IA can be synthesized with

IA = g(WA;∆A), (2)

where f and g are image generating functions (rendering processes). Interestingly,
Eqs. (1) and (2) differ in all their three aspects.

• WN 6=WA: The facial information W usually contains features such as geometry
(2D or 3D), appearance, texture, color, and illumination. To generate a realistic
photograph, WN should usually approximate the truth very closely. In contrast,
WA often only captures part of the information interesting to artistic perception,
which is regarded as the essense of a face by many artists.

• ∆N 6= ∆A: In the image analysis and computer vision literature, ∆N is usually
modeled with PCA, wavelets like Gabor bases, image patches, etc. ∆A, however,
is usually a dictionary of graphical elements used in creating artworks, for exam-
ple, graphite sketches, paint brush strokes, etc.

• f 6= g: While f is usually a simple linear combination of the image elements, the
portrait rendering process g can be a much complex process involving content-
oriented algorithms for manipulating the sketches, strokes, etc.

In the non-photorealistic rendering (NPR) [7] literature, there are plenty of studies
on artistic portrait rendering with different implementations of WA and g( · ;∆A),
corresponding to likeness and aesthetic, respectively.
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• To preserve the facial fidelity, existing portrait rendering methods adopt differ-
ent models and data structures to represent selected geometry and appearance
features in WA.

• To simulate different artistic styles, existing methods use different dictionaries
of graphical elements which are maintained in ∆A, and corresponding composi-
tional algorithms g.

In the rest of this chapter, we review the latest artistic portrait rendering methods
and their respective implementations of the two factors. We organize these methods
by the four most studied types of portraits in NPR: sketch, paper-cut, oil-painting,
and caricature.

2 Sketch

A sketch is a rapidly executed drawing demonstrating the basic shape and appear-
ance features of objects. In this section, we review three types of portrait sketch-
ing methods. The first two types of sketches depict the boundaries and salient
edges/curves in portraits with concise strokes (like stick drawings), the former us-
ing holistic models for the shape of face and the latter using part-based models with
greater expressive power. The third type of portrait sketch pays more attention to the
facial surface, including the appearance caused by illumination and shading effects.

2.1 Holistic Models

Li and Kobatake [10] made one of the earliest investigations in generating facial
sketches from photographs. Their method consists of three steps:

1. Color coordinate transformation, in which an input image is first processed with
the saturation component enhanced, and transformed to the YIQ color space. The
Y channel represents the luma information, and the I and Q channels represent
the chrominance information. They are used for extracting the face area and some
facial parts: lips are red so they have relatively larger values in Q, the face area
with skin color is generally larger in Q and smaller in I than the dark gray back-
ground, and black pupils of eyes are usually darker than other parts reflected in
Y.

2. Facial components detection. In addition to lips and pupils, facial parts such as
eyes, mouth, nose and chin are located with rough edges detected using the Y
channel of the image.

3. Approximation of edges with feature points and feature curves. The method takes
advantage of a facial sketch representation with 35 feature points connected by
feature curves as shown in Figure 1a, in which spliced second-order polynomials
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The geometric template is shown in Fig. 4. It is used to 
detect facial parts from the two imagesA and B. The template 
is moved on the imageA. If a white region is detected, it is 
assumed to be the left eye and the template of the left eye is 
fixed and the template of the right eye is moved in a given 
distance along the line which passes through the region of the 
left eye and is parallel to the longer side of Rectangle-filter. 
If the region corresponding the right eye is detected, tem- 
plates of shadow of nose, mouth and edge of lower chin are 
moved along the line perpendicular to the line connecting the 
regions of the left and the right eyes. If the mouth is detected, 
templates of contours of face is applied to the imageB. If the 
detection fails, the Rectangle-filter and geometric template 
are tilted 30 degrees and the above detection processing is 
repeated again, which is necessary to cope with tilted faces. 
The detected positions of the eyes and the mouth for Fig. 2(a) 
are shown in Fig. 2(f). 

After detecting the positions of eyes and mouth, the tilted 
face image is adjusted to be upright. The positions of the other 
facial parts are guessed and the extraction of sketches is done 
based on these positions. 

3. The extraction of sketches of facial parts 
Facial sketch image is similar to facial caricature and the 

difference of these is that sketch images represent positions 
and edges of facial parts accurately. Thirty eight feature points 
and eighteen feature curves are shown in Fig. 5. Positions of 
all of facial parts are determined by feature points and edges 
are represented by feature curves. Morphology plays an im- 
portant role in the extraction of edges of facial parts. Least- 
squares method is applied to them to determine feature points 
of face. Facial sketch image is represented by feature curves 
connecting feature points. Because of the limited space, only 
the algorithms of extraction of the sketches of mouth and chin 
are introduced in the following. 

3.1 The extraction of sketch of mouth 
To extract the region of mouth, Closing processing using a 

Fig. 5 Feature points and feature curves of facial sketch image. 

large disk is applied to the original image. By subtracting the 
original image from the obtained image and binarizing, we 
can obtain the region of the mouth. A sketch of a mouth is 
constituted by four parts of lower and upper sketches of mouth 
divided at the horizontal position of the center of face. The 
position of the center is obtained by formulation(1). 

x16 X X ~ - . ~ ? ~  x n ,  
x, + x 5  - .r?, - xl (1) 

x = 

where .T!, i = 1 ,  5, 16, 21 are horizontal positions of feature 
points shown in Fig. 5. Lower and upper edges of mouth are 
divided at this position and each segment on the right or left 
side is approximated by analytic function using least-squares 
method. If the result of least-squares fitting is not satisfacto- 
rily good, the default sketch of mouth is used. An experimen- 
tal result is shown in Fig. 6. 

3.2 The extraction of sketch of chin 
Chin contour is rather difficult to extract due to illumina- 

tion condition and rotation of head, and it can be highly con- 
taminated by noise[6]. Therefore, few studies to extract edges 
of chin are reported. However, by investigating a lot of facial 
photos, we found that three parts of edges, i. e. , two vertical 
edges near ears and one horizontal edge of lower chin are 
able to be extracted. Edges of chin are extracted by erosion 
processing. Horizontal Rectangle-filter is used to extract the 
lower horizontal edge and vertical Rectangle-filter to extract 
the vertical edges. Two points of sideburns detected in  the 
extraction of outline of hair are also used. Experimental re- 
sults are shown in  Fig. 7. 

Fig. 6 (a) original image, (b) extracted binarized image. 
( c )  results of approximation. 
(d) the extracted sketch of mouth. 

3 18 

(a)

4. Experimental results 
The photos of faces with various poses used in this research 

are taken in our laboratory with different illumination condi- 
tions. Two facial imagcs and extracted sketch images are 
shown in Fig. 8. The total number of test images is 300 of 100 
people. The rate of detecting the center points of eyes cor- 
rectly is 98%. This confirms the robustness of the detecting 
process us ing  the  generalized symmetry operator,  
Rectangle-filter and the geometric template. The rate of ex- 
tracting the sketch of each facial part correctly is 93%-98%. 
They are summarized in Table1 . The rate of extracting facial 
sketch from facial image correctly is 91% which is very high 
in the researches of extracting facial features. 

facial art B eye @ 

5. Conclusion 
We proposed a new method to extract sketch image ro- 

eye ow B @ se @ Q Bmoutl Fig. 8 top: origmal images, 
bottom: extracted facial sketch images. rate 

bustly. It is based on the symmetry measure, Rectangle-filter 
and a geometric template. Edges of each facial part are repre- 
sented by analytic function. Experimental results show the 
robustness of the proposed method. Facial sketch image rep- 
resents positions and edges of all facial parts. Therefore, we 
think that facial sketch image may play important roles in the 
applications of face recognition and expression transforma- 
tion. The future theme is the experiments on extracting sketch 
images from faces of different ages and races using our sys- 
tem. 

98% 96% 96! 

REFERENCES 
[ 11 Kann Sobottka, Ioannis Pitas, "Extraction of Facial Regions and 
Features Using Color and Shape Information", 13th IAPR, pp, 421- 
425, 1996. 
[2] Yuanzhong Li, Hidefumi Kobatake, "Extraction of facial skctch 
image and expression transformation based on FACS", ICIP95, pp. 
520-523, 1995. 
131 Brunelli R. and Poggio T., "Face recognition: features versus 
templates", IEEE Trans. Pattem Analysis and Machine Intelligence, 

[4] Shi-Hong Jeng, Hong-Yuan Mark Liao, "An Efficient Approach 
for Facial Feature Detection Using Geometrical Face Model", 13th 

[5] D. Reisfeld and Y. Yeshuran, "Robust detection of facial features 
by generalized symmetry", Proc. 11 th Int. Conf. on Patt. Recog., pp. 
117-120, 1992. 
[6] Xiaoguan Jia and Mark S. Nixon, "Extending the Feature Vector 
for Automatic Face Recognition", IEEE Trans. Pattem Analysis and 
Machine Intelligence, Vol. 17, NO. 12, pp. 1167-1 176, 1995. 

Vol. 15, NO. 10, pp. 1042- 1052, 1993. 

IAPR, pp. 426-430,1996. 

Fig. 7 Columnl: top: original image, bottom: image after preprocessing of chin 
Column2: top: result of horizontal Rectangle-filter, bottom: result of vertical Rectangle-filter. 
Column3: top: result of thinning of Row2-bottom. bottom: extracted sketch image. 
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Fig. 1 (a) Feature points and feature curves used for extracting facial sketch images by Li and
Kobatake [10, 11]. (b) Example results of facial sketch extraction using their method, from [11].

are used for approximating the edges of mouth, eyes, nose and chin. The 35
feature points are then detected as characteristic points on the curves.

In their follow-up work [11], detailed algorithms of the method were improved,
including the symmetry measure, a novel rectangle filter, a geometric template, and
morphological processing, which leads to more robust detections of the positions
and edges of facial parts. Figure 1b shows two example facial sketches extracted
using the method.

In Li and Tobatake’s methods, the two factors introduced in Section 1 are im-
plemented in a very straight-forward way. The facial information WA is represented
with the shape model shown in Figure 1a, which is extracted from the color and gra-
dient features of the input image. This ensures that the portrait sketch looks similar
to the photograph. As for the second factor, ∆A simply defines a line drawing style,
with the feature curves fitted using spliced second-order polynomials.

To further improve the results of Li and Tobatake’s method, especially on the
aesthetic aspect, many studies have been carried out recently. Chen et al. [2] devel-
oped an example-based facial sketch generation system whose pipeline is shown in
Figure 2. Observing that the artistic styles of sketches vary among different artists
and cannot be easily summarized by precise rules such as polynomial curves up to
a specific order or curvatures of certain degrees, their system refers to a set of train-
ing examples for obtaining their styles. Each training example is a pair of portrait
photograph and its corresponding sketch image created by artists, as shown in the
top-left of Figure 2. An active shape model (ASM) [5] for face is also attached to
each example, with the landmark points manually labeled for better accuracy, as
shown by the dots in the middle-left of Figure 2.

• In the training phase, a mean shape of face is computed by averaging the ASM
landmarks of all training examples, then a geometric transformation is performed
on each training example to warp the image and the sketch to match the mean
shape. After that, a prior probability model of the sketches is learned to cover
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Figure 4. The system framework. Our system consists of a training phase and a runtime phase.

: Width of this line.

: The control points of
this line, where is the number of control points.

It is important to have a flexible sketch model so that
the style can be captured. For example, the sketch models
(Figure 3(c) and 3(d)) for the right eyes (Figure 3(a) and
Figure 3(b)) are defined as a combination of five lines and
an eyeball as shown in Figure 3(g). There is a line ( )
below the eye in Figure 3(e), but not in Figure 3(f). And
there is a line ( ) above the eye in Figure 3(f), but not
in Figure 3(e). The on-off switch is therefore necessary to
model this kind of effect. In addition, there is no restriction
on the location of lines or their endpoints. For example,
point A and point B are separated in Figure 3(e) but they
coincide in Figure 3(f).
In addition, we define three types of lines in our system,

depending on whether the line is affected by others or not.

Always appears;

Probably appears, but independent of other lines.

Depends on other lines.

We can build a prior model based on these three
types of lines from the set . Each line is modeled with
a Gaussian, much like in ASM [2].

2.3 The system framework

Our system consists of a training phase and a runtime
phase. In the training phase, we start with a set of image
and sketch pairs, with manually labeled feature points.

An ASM model is first trained to automatically locate
the facial feature points in any input image.
Based on these feature points, we define the average
shape of all input sketches as .
A geometric transformation is then defined to warp any
input shape to the , .
Estimate prior probability from .

At runtime, for a given image I, we generate a sketch by
the following steps:

Apply ASM to extract the facial feature points.
Apply geometric transformation: .
Employ non-parametric sampling to obtain the “ex-
pected sketch image” .
Apply to obtain sketch from .
Compute final sketch S from the inverse geometric
transformation: .

Figure 4 shows various steps in both the training phase
and the runtime phase. Detailed algorithms are discussed in
next two sections. Note that the hair is not part of learned

Fig. 2 Pipeline of the example-based facial sketch generation system developed by Chen et al. [2]

three types of curves: those always appear, those probably appear but are inde-
pendent of other curves, and those depend on other curves.

• At runtime, given an input face photograph, ASM is first applied to extract the
landmark points, with which a geometric transformation is defined between these
landmarks and the mean shape. After applying this geometric transformation to
warp the input image, non-parametric sampling is used for producing a sketch
image for the input, which is then warped back to the original shape using an
inverse geometric transformation, for the final sketch.

Compared with Li and Kobatake’s method, Chen et al.’s system improved in both
factors through WA and ∆A. For facial information WA, the ASM model provides a
more robust way to capture the shape of the face than the model in Figure 1a which
relies on local edge detection and curve fitting. For a higher level of aesthetic, the
sketches used as graphical elements in the style set ∆A come essentially from the
training examples created by artists instead of naive polynomial curves, and are
encoded within a prior distribution of the sketch curves as we introduced above.

2.2 Part-Based Models

An disadvantage of the holistic methods is that the rendered sketches only contains
stiff lines and curves, while sketches created by artists usually have various curve
styles and levels of darkness and thickness for different facial components, as well
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as the hair. To address this problem, part-based methods were introduced for pro-
cessing different parts of the face separately in order for greater expressive power.
Generally, these part-based models allow richer representations of WA and larger
varierty of elements in ∆A.

2.2.1 Flat Model

Chen et al. [3] proposed an example-based composite sketching approach. The main
idea of this approach is to decompose the face into semantic parts (as shown in
Figure 3) and also to use image-based instead of curve-based sketches (as shown in
Figure 4). Their system also has a sub-system for hair rendering which contributes
greatly to the visual quality of the portrait sketches.

Example-Based Composite Sketching of Human Portraits
Hong Chen1,2, Ziqiang Liu1,2, Chuck Rose3, Yingqing Xu1, Heung-Yeung Shum1, David Salesin4,5

1 Microsoft Research, Asia
2 University of California , Los Angeles

3 Microsoft Corporation
4 University of Washington

5 Microsoft Research
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Figure 1: (a) Input image; (b) Image decomposed into components; (c) Best match for each component found from training examples; (d)
Corresponding drawings of components in (c); (e) Composite drawing of separate parts as the final drawing.

Abstract
Creating a portrait in the style of a particular artistic tradition or a
particular artist is a difficult problem. Elusive to codify algorith-
mically, the nebulous qualities which combine to form artwork are
often well captured using example-based approaches. These meth-
ods place the artist in the process, often during system training, in
the hope that their talents may be tapped.
Example based methods do not make this problem easy, how-

ever. Examples are precious, so training sets are small, reducing
the number of techniques which may be employed. We propose a
system which combines two separate but similar subsystems, one
for the face and another for the hair, each of which employs a
global and a local model. Facial exaggeration to achieve the desired
stylistic look is handled during the global face phase. Each subsys-
tem uses a divide-and-conquer approach, but while the face subsys-
tem decomposes into separable subproblems for the eyes, mouth,
nose, etc., the hair needs to be subdivided in a relatively arbitrary
way, making the hair subproblem decomposition an important step
which must be handled carefully with a structured model and a de-
tailed model.

Keywords: Non Photorealistic Rendering, Computer Vision

1 Introduction
We describe in this paper an interactive computer system for gen-
erating human portrait sketches. Our system takes a human face
image as input and outputs a sketch that exhibits the drawing style
of a set of training examples provided by an artist. Our artist created
the training set in the style of Japanese cartooning, or “manga”. Our
training data has two prominent characteristics. First, each exam-
ple sketch is a highly abstract representation of the original source
image, using realistic as well as exaggerated features to achieve
an evocative likeness. Second, the training set contains a limited
number of examples, as is often the case in example-based art ap-
plications. From this limited set, we can construct sketches for any

image that satisfies certain input requirements.
Our system tackles this problem with a learning based rendering

approach. Although there have been several successful similar ef-
forts, discovering the relation between the source portrait and the
corresponding sketch is a problem worth continued study. The Im-
age Analogy [11] technique synthesizes a new “analogous” image
B′ that relates to an input image B in “the same way” as the exam-
ple image A′ relates to A. This technique, while good at mimicking
the local relationships from image pair (A′,A) to (B′,B), lacks the
power to capture the high level structural information present in
our data. Another system, Example Based Sketch Generation [5],
assumed a Markov Random Field (MRF) property in order to use
non-parametric sampling of sketch point. It does not address face
exaggeration and hair rendering which is handled in our system.
Where our work improves upon the existing body in this area is
this: in addition to making use of local information, we use the
inherent structure in the data for a global synthesis step.
We propose a composite sketching approach for our system. The

basic idea is to first decompose the data into components that are
structurally related to each other, such as the eyes or mouth. Af-
ter these have been independently processed, these components are
carefully recomposed to obtain the final result. These two steps for
both face and hair form the core of our system. Generating evoca-
tive sketches of hair is one of our primary results. The principal
advantage of our component-based approach is its capacity to cap-
ture large-scale correlation within the components and its ability to
create an overall picture in the style intended by the artist. This can
be seen in Figure 1.

2 Related work
NPR and digital arts. Many non-photorealistic rendering (NPR)
techniques have been proposed to generate digital artwork. Sys-
tems have been created to emulate watercolor and impressionism.
More relevant to our work, however, are the NPR results of pen-
and-ink [8; 19; 20; 22; 23] and technical illustration [17; 18]. NPR

Fig. 3 Portrait sketching using example-based composite sketching [3]. The input image (a) is
decomposed into facial parts shown in (b), then for each part the best match is found in the training
examples, as shown in (c). Then sketches are drawn for each part in (d), which are composited in
(e) considering both global and local features.

Fig. 4 Example sketches of
facial parts used by Chen
et al. [3] for ∆A.

(a) (b) (c)

Figure 3: The effect of the local and global model. (a) The input
image; (b) Sketch created with local model; (c) Sketch after global
model incorporated.

(1)

(2)

(3)

(4)

Figure 4: The prototypes extracted from the training set.

For the representation of Ig, we carefully chose 14 features from
a pool of approximately 30 recommended facial features in a cari-
cature drawing textbook [16]. They are

w1/w w2/w w3/w w4/w w5/w w6/w w7/w
h1/h h2/h h3/h e1 e2 e3 e4

. (3)

These relations describe the proportion of the face devoted to a par-
ticular facial feature. w4/w, for instance, relates the width of the
head to the width of the mouth. By not tying these relations to fixed
values, the model can adjust the size of the features as the overall
size of the head is changed. For any input face image I, we first
use an Active Appearance Model (AAM) [6] to determine the 87
control points. We then use these control points to generate Ig. To
determine the placement of these face elements on the cartoon can-
vas, each element needs five parameters {(tx, ty),(sx,sy),θ}. (tx, ty)
represents the translation of the element in the x and y directions
respectively. (sx,sy) are the scaling parameters and θ is the rela-
tive rotation angle. Additionally, the face contour needs the warp
parameter cw. Together, these constitute I′g. As shown in Figure 3,
while each of the facial features drawn using the local model are
correct, their overall composition is lacking. The global model im-
proves the sketch, making a more vivid overall face.
Learning the relation between I′g and Ig from a set of examples

is non-trivial. Instead of simple linear mapping, we use k-NN in-
terpolation to reproduce this non-linear mapping. We also make
use of heuristic methods adopted by the artist. A previous system
by Liang et al. [14] used partial least squares to learn facial fea-
tures automatically. Since the number of examples is usually very
limited and hand-annotating each example is a relatively minor ad-
ditional cost over their initial creation, we believe our method is
more appropriate and robust.

5 Composing hair
Hair cannot be handled in the same way as the face. This is due to
a number of reasons. First, hair has many styles and is not struc-
tured in the same regular way that faces are, so building a model
is not straightforward. The hair is in many ways a single unit, of-
ten rendered using long strokes, making meaningful decomposition

w

w1

w2

w1

h
w3

w4
w5
w6
w7

h1

h2

h3h4

h4
h4

e4e3

e1 e2

Figure 5: 14 features defined for a global model.

challenging. Even if we decompose the hair into regions, recom-
position remains a difficult step. Finally, there is no clear corre-
spondence between regions of two different hairstyles. Lacking a
correspondence, we cannot use blending techniques.
Due to these factors, we synthesize the hair independently from

the face, employing a different mechanism. The overall flow of our
hair system is shown in Figure 7. First the image is dissected into 5
regions we call the structural components. Our subject’s structural
components are matched against the database and the best match
is selected for each. The n-best matches can be chosen to create
a range of pictures for the user. These matched components are
warped and assembled into an overall model for the hair. To this,
details are added based upon the subject image. This process is
detailed in the remainder of the section.

5.1 Hair composite model
Two key aspects make it possible to render the hair. Critically, the
global hair structure or impression is more important than the de-
tails, especially for a highly-stylized look like manga. Attention to
basic detail is not necessary since a person’s hair details are rarely
static. Wind, rain, rushed morning preparations, or severe sleep
deprivation brought on by Siggraph deadlines, can all affect the de-
tails of one’s hair. Figure 6 shows the three best results for a single
subject’s hair. All exhibit the correct shape, and picking between
them can be at the behest of the user or chosen automatically by the
system.
As suggested by our artist, we coarsely segment the hair into five

segments, as shown in Figure 7. Each is in a fixed position and may
divide long strokes that are fixed later on. We chose these segments
because each indicates important global information about the hair,
so we name these our “structural components”. In addition to the
structural (global) model, we also use a detail model. Artists often
use detail to add uniqueness and expression to a portrait. These
details confuse the global model, but we take them into account
with a detail model, the final phase in our hair sketch synthesis.

5.2 Extracting the image features for the hair
When an input image is presented to the system we first perform
an image processing step. We use this step to determine the image
features of the hair which we can then match against the database.
The two techniques we employ are an estimated alpha mask and
hair strand orientation fields, as shown in Figure 8.
First, an alpha mask is calculated to separate the hair region from

background and face. A pixel used for hair can often be blended
with those used for the background and face, which is why an alpha
mask is needed, rather than a simple bit mask. Knockout [1] is used
to generate the mask, as shown in Figure 8(a).
Hair orientation is a very useful feature for determining the

placement of strokes. We begin by using steerable filters to cal-
culate the orientation of each pixel in the hair as demarcated by the

In the composite sketching system of Chen et al. [3], the sketches are splitted
into two layers: a global layer and a local layer. The global layer captures the spatial
placement of the facial parts, and the local layer captures how each facial part is
depicted. For both layers, features are selected and learned using training image-
sketch pairs provided by artists. At runtime, two processing steps are executed.

• Local Processing: The input image is first decomposed into facial parts using a re-
fined ASM, then for each part the system finds the best match in shape (according
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to ASM landmarks) from the training examples. After that, their corresponding
sketches of the best matches are adopted.

• Global Processing: The sketches of the facial parts are composed according to the
learned global spatial model, which adjusts the locations, sizes and orientations
of the parts.

The hair rendering sub-system extracts both structural (boundary) and detail
(streamline) components in the hair area, and fits them with curves. The two types
of curves are then rendered using their respective example-based strokes (learned
from training examples) to synthesize the hair sketch.

Regarding the two factors we have been discussing in this chapter, the global/local
hybrid method of Chen et al. [3] works in a more flexible way for preserving face
fidelity in WA than the global geometric transformation based on ASM used in their
early work [2]. For each facial part, the locally best matching sketch is selected
and composed into a globally coherent image. But due to the selection of the best
matches instead of a learned local sketch model [2], the system may lose certain
degrees of likeness when the number of training examples is small, for example, the
locally best matches may not be good enough in terms of similarity. On the aesthetic
aspect, however, this method achieves much finer detailed appearances by maintain-
ing image-based sketches instead of stiff curves in ∆A, as shown in Figure 4, where
different facial parts may be sketched using different techniques by artists.

2.2.2 Hierarchical Model

Since part-based portrait rendering methods have greater expressive power than
global methods, more studies in this direction have been dedicated to better models
and algorithms for both global and local processing. A powerful model for orga-
nizing the facial components is the hierarchical and compositional And-Or Graph
(AOG) [23, 22, 24], as shown in Figure 5.

In this AOG, the And-nodes represent decompositions of the face or its parts into
sub-components (e.g., decomposing the face into nose, mouth, etc.), and the Or-
nodes represent alternative types of a part (e.g., there are multiple ways to sketch a
nose, given by either models or examples). On the AOG, complex spatial constraints
of the facial parts can be embedded at the And-nodes at multiple levels, for example,
using Markov networks [22], and the photo-sketch similarity measure enforcing the
likeness principle can be enforced at multiple resolutions thanks to the hierarchical
structure, and optimized by switching at the Or-nodes during rendering.

To create the face AOG, a hierarchical structure is designed by hand with the
nodes corresponding to semantic facial parts. Then a set of training sketch exam-
ples with their corresponding photographs are collected and manually decomposed
corresponding to the structure of the AOG. The decomposed parts are then asso-
ciated with the nodes in the AOG in order to construct ∆N and ∆A for multiple
scales in the hierarchy as marked on the right side of Figure 5, with which models
for constraining spatial configurations are learned at the And-nodes, and switching
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changes. For example, a face expands to facial parts during
transition from low to medium resolution, while a facial part
expands to image patches during transition from medium to
high resolution. On the other hand, the state transitions of
facial parts can also cause structural changes like opening or
closing eyes, which are widely observed in facial motions. To
account for these structural variations, we formulate our
representation as a three-layer AND-OR graph shown in
Fig. 2. An AND-node represents a decomposition with the
constituents as a set of OR-nodes, on which the constraints of
node attributes and spatial relations are defined, as in a
Markov random field model. An OR-node functions as a switch
variable in the decision trees, pointing to alternative composite
deformable templates that are AND-nodes. The selection/
transition is then realized by applying a set of stochastic

grammars and assigning values to the switch variables. A leaf
node is an instantiation of the corresponding AND-node,
which is associated with an active appearance model (AAM) to
allow geometric and photometric variations.

In our model, parsing a face image is equivalent to
finding a valid traversal from the root node of the AND-OR
graph. Following the thick arrows to select appropriate
templates in Fig. 2, we parse the input face image and arrive
in a configuration, as in Fig. 3. In essence, an AND-OR graph
is essentially a set of multiscale faces of all structural,
geometric, and photometric variations. We construct the
AND-OR graph by maximizing the likelihood of parameters
given a set of annotated face parse graphs. The parsing of a
new face image is then conducted in a coarse to fine fashion
using maximum a posteriori (MAP) formulation. To balance
the representation power and model complexity, we adopt
minimum description length (MDL) as the criterion of
transitions between layers. These transitions are based on
both the scales/resolutions of input face images and the
accuracy required by specific tasks, e.g., low resolution for
detection, medium resolution for recognition, and high
resolution for nonphotorealistic rendering.

1.3 Related Work
In computer vision, numerous methods had been proposed to
model human faces. Zhao et al. suggested [41] that following
the psychology study of how human use holistic and local
features, existing methods can be categorized as 1) global [7],
[8], [13], [16], [31], [2], 2) feature-based (structural) [10], [17],
[32], [33], [34], [40], and 3) hybrid [14], [26] methods. Early
holistic approaches [13], [31] used intensity pattern of the
whole face as input and modeled the photometric variation
by linear combination of the eigenfaces. These PCA models
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Fig. 1. Face over different (a) expressions, genders, ages, and (b) scales.

Fig. 2. An illustration of the three-layer face AND-OR graph representation. The dark arrows and shadow nodes represent a composition of seven leaf
nodes hBrowType2ðL=RÞ; EyeType3ðL=RÞ; SkinType1; NoseType2;MouthType1i, each being a subtemplate at the medium-resolution layer. This
generates a composite graphical template (at the bottom) representing the specific face configuration with the spatial relations (context) inherited
from the AND-OR graph.

∆ 1
N

∆ 1
A

∆ 2
N

∆ 2
A

∆ 3
N

∆ 3
A

Fig. 5 A three-layer And-Or Graph (AOG) representation for face [24]. Dark arrows represent the
paths for generating an instance from the AOG, by decomposing And-nodes (solid ellipses) into
sub-components and choosing among alternative types at Or-nodes (dashed ellipses). As marked
on the right side, examples in ∆N and ∆A of different scales can be embedded in the AOG.

cannot efficiently account for the geometric deformation and
require images to be well aligned. Some later work separately
modeled the shape and texture components of faces, e.g., the
AAM [8], [35] and Morphable Models [16], [2]. Although these
well-known methods captured some geometric and photo-
metric variations, they are limited from handling large-scale
structural variations due to the linear assumption and fixed
topology. To relax the global constraint, some component-
based/structural models were presented, including the
Pictorial Model [10], Deformable Templates [40], Constellation
Model [34], and Fragment-based Model [32]. These models first
decompose faces into parts in supervised or unsupervised
manners, then the intensity patterns of parts are modeled
individually, and the spatial relations among parts were
modeled jointly. In addition, there are some hybrid methods
[14], [26], which corporate the global and local information to
achieve better results. However, in spite of the greater
structural flexibility over the global methods, these models
have their own limitations: 1) in contrast to the hierarchical
transforms that we observed during the scale/resolution
changes of face images, the structures of these models are flat
and without scale transitions to account for the emergence of
new features (e.g., marks or wrinkles), 2) the topologies of
these models are fixed and cannot account for structural
changes caused by state transitions of the parts (e.g., opening
or closing eyes), and 3) the relations among parts are usually
modeled by global Gaussian or pairwise Gaussians and,
therefore, the flexibilities are limited.

To model the scale variabilities, some researchers con-
struct a Gaussian/Laplacian pyramid from the input image
[20] and encode images at multiple resolutions. Others model
each object as one point in the high-dimensional feature space
and increase the dimension to match the augmented complex-
ity [21]. Both methods are inefficient and inadequate for
human faces, where dramatic variabilities are exhibited due
to the absence of feature semantics and lack of structural
flexibility. We thus call for meaningful features that are
specially designed for different scales/resolutions. In any
case, constraints and relations on these features shall be
enforced to form valid configurations while still maintaining
considerable (structural/geometric/photometric) flexibil-
ities. Ullman et al. proposed Intermediate Complexity [32] as a
criterion for selecting the most informative features. Their

learned image fragments of various sizes and resolutions
incidentally support our use of the three-layer dictionary:
faces, parts, and primitives. Similar to the AAM models, each
element in our dictionary is governed by a number of
landmark points to allow more geometric and photometric
variabilities, where the landmark number is determined by
complexity of the element. For each part (e.g., mouth), we
allow selecting from a mixture of elements (e.g., open or
closed mouth) and enforce the structural flexibility during
state transitions. In addition, a coarse element expands to a
subgraph of finer elements and accounts for the structural
change during scale transitions. The selections and expan-
sions are then implemented using the AND-OR graph model.
While the original AND-OR graph was introduced by Pearl as
an AI search algorithm [24] (1984), our model is more similar
to some recent works by Chen et al. [6] and Zhu and Mumford
[43]. The AND-OR graph that we use is shown to be equivalent
to a Context Sensitive Grammar (CSG) [28], which integrates the
Stochastic Context Free Grammar (SCFG) [11] and Markov
Random Field (MRF) [42] models.

With the ability to represent large structural variations and
capture rich facial details, our model facilitates the generation
of facial sketches for face recognition [37] and nonphotor-
ealistic rendering [18], [36]. Supported by psychology studies
[4], it is known that sketch captures the most informative part
of an object, in a much more concise and potentially robust
representation (e.g., for face caricaturing, recognition, or
editing). Related work includes [29] and [5]. The former
renders facial sketches similar to high-pass filtered images by
combining linear eigensketches and does not provide any high-
level description of the face. Constrained on an Active Shape
Model (ASM) [7], the latter generates facial sketches by
collecting local evidences from artistic drawings in the
training set and lack of structural variations and facial details.

1.4 Our Contributions and Organization
We present a hierarchical compositional graph model for
representing faces at multiple resolutions (low, medium,
and high) and large variations (structural, geometric, and
photometric). Our model parses the input face images of
given resolutions by traversing the constructed AND-OR
graph and drawing from the multiresolution template
dictionaries. The traversals are guided by the SG and
MDL criterion. Our hierarchical-compositional model,
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Fig. 3. A face is parsed into the configuration of the local parts and skin zones, of which both the images and symbolic representations are shown.

Parts and skin zones can be further parsed into subgraphs of image primitives.

Fig. 6 A parse graph instantiated from the AOG in Figure 5 [24]. This process essentially generates
a portrait sketch by selecting sketches of different parts and composing them.
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probabilities are summrized at Or-nodes (note: if all examples are preserved in the
AOG without similar ones merged, the switching probabilities are uniform).

To generate a portrait sketch from an input photograph, it is equivalent to instan-
tiate a parse graph from the AOG by decomposing at And-nodes and switching at
Or-nodes, as shown in Figure 6. An instance optimizing the probabilities at the And-
and Or-nodes as well as the similarity measures at multiple resolutions is expected
to preserve the fidelity both globally and locally (c.f. the global/local hybrid model
introduced by Chen et al. [3]).

Compared with the flat model described in the previous section, the hierarchical
AOG has two advantages on the aspect of the face fidelity factor.

1. The AOG can encode spatial constraints more efficiently with the And-nodes
at multiple levels on the graph. Furthermore, if multiple selections at Or-nodes
are clustered with similar ones merged, the AOG compresses the storage of all
training examples, which is important when the training set is large.

2. The hierarchical structure of AOG makes it easier to enforce likeness for different
facial parts at multiple resolutions, especially when we prefer the likenesses at
different parts/levels to have different weights. For example, the likeness of the
eyes could be more important than that of the eyebrows, while the appearance of
an entire eye might possibly be more important than those of the eyelids at an
unnecessarily higher resolution. In this sense, the power of the face AOG has yet
to be fully developed before comprehensive psychological studies on this topic
are carried out.

As for the artistic style factor, Xu et al. [23, 22, 24] still used sketch examples cre-
ated by artists. To improve the visual effects, Min et al. [15] collected more stylish
training examples in ∆A and added two sub-systems for processing the hair and
clothes, respectively. Figure 7 includes an example generated by their system.Lecture Notes in Computer Science: Authors’ Instructions 11

(a) (b) (c) (d) (e)

Fig. 10. Multiple style rendering. (a) Input image; (b) The portrait of primitive sketch;
(c) The portrait of literary sketch; (d) The portrait of pencil sketch; (e) The colored
portrait.
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It is easy to generate another style by replacing the ¢S with another sketch
dictionary ¢S0 . Additionally, we can get a colored portrait by tinging the region
of each portrait component. The colored portrait is more expressive. We can see
these eÆect in Figure 10. With a larger sketch dictionary, we can generate more
styles.

4 Experiments

To verify the framework we proposed, experiments were conducted based on
225 frontal face images chosen from diÆerent genders, ages and races. Some
images are taken from the AR data set [23]. All the images are resized to the
same resolutions: 500£ 500. We take 125 images for training and 100 images for
testing. The training data satisfy following prerequisites:

1. Frontal view only(no hats and glasses).

Fig. 7 An example portrait sketch generated by the system of Min et al. [15]
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2.3 Sketching the Facial Surface

Besides the concise sketching styles discussed in Sections 2.1 and 2.2, there is an-
other popular sketching style which pays more attention to the facial surface instead
of the boundaries and salient edges/curves. This style depicts the appearance of fa-
cial surface affected by illumination and shading effects. There are a few studies on
this type of portrait sketches in the NPR literature.

Wang and Tang [21] proposed an example-based method for synthesizing portrait
sketches with surface strokes depicting the facial appearance. Figure 8 displays the
framework of their method.

We represent face shape with a graph containing the 
coordinates of a set of fiducial points. A mean shape is 
computed from the training set. In order to remove shape 
factor, we warp the face image to the mean shape using 
the affine interpolation based on a set of triangles. After 
alignment, the fiducial points in different face photos and 
sketches finally correspond to the same position. We 
observe that the sketch grayscales after shape alignment 
also has a similar style of exaggeration as the sketch 
shape as shown by Eq. (13). If an area in photo is light 
color, the artist will leave it blank in the sketch; if an area 
is relatively dark, the artist tends to emphasize it more 
with shade texture. Therefore, at least within a small local 
neighbor, there is a linear trend, thus a linear relation 
similar to Eq. (15) can be derived for texture transform. 
Of course, this is a very rough approximation, since an 
artist will not decide on the grayscale of a small area only 
based on the grayscales of the same area in the photo. For 
precise description of the texture transformation, the 
whole picture has to be taken into consideration. 

Finally, the sketch synthesis system based on separate 
shape and texture eigentransformation can be 
implemented through the following steps, as shown in 
Figure 3: 

For an input face photo P , locate all the fiducial 
points on the face graph model to extract shape 
information. 

Warp the face image to a mean face shape 
derived from training set to separate the texture 

pI  and shape pG from the photo image. 

Apply eigentransformation to the photo texture 

and shape respectively to generate texture sI

and shape sG  for the sketch. 

Warp the generated texture from the mean shape 
to the sketch shape to produce the final 
synthesized sketch S .

3. Face sketch recognition 

Face sketch recognition is based on the matching 
between the probing real sketch and the synthesized 
pseudo-sketch from photo. In this section, we present the 
PCA and Bayesian classifiers for recognition. For 
classification, we extract a set of salient geometric 
measures from the face graph to represent the shape 
feature, including the sizes and relative positions of nose, 
eyes, eyebrows, and face contours etc., and the texture 
vector is normalized by the shape.  

3.1. PCA classifier 

Let 1NRG  and 2NRI  represent the shape and 

texture vectors, where 1N and 2N  are the vector length 

for shape and texture.  The feature vectors used here is 
similar to the features used for photo-based recognition in 
active shape models [2][3]. Eigenspaces for shape and 
texture are computed from the sketch training set. In the 
PCA classifier, feature vectors are projected to 
eigenspaces to get the low dimensional features, 

GG mGEx ,  (16) 

II mIEy ,               (17) 

where GE  and IE  are the eigenvector matrices of shape 

and texture respectively, and Gm  and Im are the 

averages of shape and texture respectively. The shape and 
texture features are normalized to unit norms, and form an 
integrated feature, 

T
TT

y

y

x

x
z

||||||||
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Classification is based on the Euclid distance, 

Figure 3. Framework of the face sketch synthesis system. 
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Fig. 8 Framework of the portrait sketch system developed by Wang and Tang [21].

In this method, a triangular mesh is attached to the face, whose vertices are lo-
cated at the fiducial points on the face, for example, the eyeballs, the corners of the
mouth, etc. Given a training set containing pairs of portrait photographs and their
corresponding sketches created by artists, the fiducial points are located for each im-
age (both photographs and sketches), and its corresponding triangular mesh is con-
structed. Then two eigentransformations from photograph to sketch are computed
for shape (coordinates of mesh vertices) and texture (grayscale images), respec-
tively. For rendering, given the input photograph, its fiducial points and triangular
mesh are computed, with which the image is warped to the mean shape derived from
the training set. This essentially separates the shape component Gp and the texture
component Ip, which then pass through their respective eigentransformations we
computed before to generate the sketch shape Gs and the sketch texture Is. After
warping Is back to the original shape of the input, we obtain the final sketch.

The global design of the method by Wang and Tang [21] is essentially very sim-
ilar to that of Chen et al. [3], although the two differ in detailed models and algo-
rithms for shape and texture. They both try to separate the shape and texture infor-
mation, and define certain mapping relationships for both components to transfer a
photograph into a sketch image.

• For shape, Chen et al. adopted ASM, while Wang and Tang used triangular mesh.
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• For texture, Chen et al. used an non-parametric sketch model depending on the
photograph, while Wang and Tang used an eigentransformation in the image
space.

Therefore, the face fidelity and artistic style factors are implemented in a similar
way as in the flat model of Chen et al. with different details. The fidelity is enforced
using the triangular mesh attached to the face, with shape and texture eigentransfor-
mations, and the artistic style is defined by the sketch examples created by artists.

Another interesting work on sketching the facial surface was presented by Tres-
set and Leymarie [20], as illustrated in Figure 9. In this work, sketches are drawn
randomly as Bezier curves at different densities for each color-clustered region in
the segmented face area. In this way, the face fidelity is only roughly preserved at
a low-resolution level in terms of approximate grayscale levels of different regions,
but dropped for most details. Meanwhile, this random sketching process defined in
its style ∆A produces a unique appearance which may appear aesthetic to people.
Generative Portrait Sketching by Tresset and Fol Leymarie Digital Studios@ Goldsmiths

(a) (b) (c) (d) (e) (f)

Figure 5: Example of medial-axis based shading. (a) Segmented face region, Maeliss, 2003.
(b) K-Mean clustering after blurring. (c) Binary map representing two gray levels. (d) Medial
axis map of binary map in (c). (e) Example of shading executed using (c) and (d). (f) Example
of the shading process for four segmented levels.

(a) (b) (c)

Figure 6: Examples of random shading. (a) Source image, preprocessed manually, Guilio,
2002. (b) Example of random shading extracted from (a). (c) Another variant of random
shading for a different set of parameters.

in the original image (Figure 5.(e,f)). This previous step can then be repeated with varying
angles ↵ depending on the desired effect.

To perform random shading, we first randomly select an initial location L on a binary
map, and an additional n points P ; L and P are then used to calculate Bezier curves [14]
whose control points are also randomly chosen in circular areas of varying diameters. Each
control point is calculated to allow for a smooth transition between the succeeding curves,
which create together a scribbling effect of length of factor n. This process can be iterated as
a function of the number of black pixels in the map (Figure 6).

4.3. Drawing

Presently, AIKON draws sketches on different outputs including old fashioned pen plotters.
There are a few motivating factors encouraging us to use pen plotters. They have been and are
still used by a group of pioneering computer artists called “Algorists” [12]. Pen plotters have
the advantage of really drawing, on paper, using various means: it is the combination of the
paper and pen movements that creates the drawing, making it possible to use traditional inks,
watercolours, as well as various paper types. The results have far more materiality and great
flexibility in the choices (inks, papers, etc.) given to the artist. Another interesting possibility
to be explored would be to create etchings, giving the potential of a classical art’s medium.
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Fig. 9 Portrait sketch generation using the method of Tresset and Leymarie [20]. The segmented
face region in (a) is blurred and the pixel colors are clustered in (b). Then a binary map (c) rep-
resenting two grayscale levels are generated from (b), and its medial axis is computed in (d). For
(c) and (d) the system sketches randomly at different densities using Bezier curves to obtain (e). If
replacing (c) and (d) with four levels and sketching correspondingly, we may obtain (f).

3 Paper-Cut

The second portrait genre we review in this chapter is paper-cut, which is essentially
a binary image called Mooney images in the psychological literature [8]. But the
binarization process is inhomogeneous for different facial areas which usually does
not correspond strictly to the grayscale levels. While there have been a few studies
on paper-cut in the NPR literature, to the best of our knowledge, the only dedicated
portrait paper-cut work is by Meng et al. [14].

The method of Meng et al. adopts the hierarchical AOG face representation we
introduced in Section 2.2.2, as shown in Figure 10. Its global design is very similar
to that of Min et al. [15], except a few differences in detailed algorithms, and that
sketch examples in the latter are replaced by paper-cut versions in the former, as
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shown in Figure 11. Beside, Meng et al. also used separated sub-systems for face,
hair and the clothes.

Figure 12 includes two results generated by the system of Meng et al. Regarding
the fidelity and style factors, the structural information of the face is represented
by the AOG model, and the artistic style and the aesthetic rely on the paper-cut
examples in ∆A created by artists.

Figure 3: Parse graph of a face image and its corresponding paper-cut.

(a) (b) (c)

Figure 4: The bottom-up phase corresponding to the example in Fig.1. (a) shows the AAM keypoints. (b)
shows the binary sequence of left eyebrow, left eye and mouth. (c) is the draft binary proposal.

and keypoints. We search for

(i, j, · · · )∗ = arg min
i,j,···

d(Ti,j,···, T ′) + λc(Ti,j,···) (4)

in which d is the distance between the template and the
proposal, c is the count of original instances that Ti,j,··· cov-
ers (i.e., the number of different original paper-cut templates
that the selected components are taken from), and λ is a tun-
ing parameter. Intuitively, small λ leads to better matched
facial components, while large λ leads to more compatible
components in the result (since more components tend to
come from the same original paper-cut) thus more consistent
global styles, at the cost that the result paper-cut may be
less similar to the same person in the photograph. In Eq.(4),
the distance function d is defined as the sum of Euclidean
distances between images of facial components in Ti,j,··· and
T ′ after warping the former using thin plate spline (TPS) [1]
to match the keypoints of the latter.

In implementation of the above search, we use a greedy
approximate algorithm:

1. Compute the distances between all pairs of correspond-
ing template and proposal components;

2. Construct an initial solution with template compo-
nents best matching the proposal individually;

3. Substitute the worst matched component in the cur-
rent solution with an alternative one that decreases
the total cost defined in Eq.(4) most. Iterate this step
until there is no better solution with lower cost.

Once (i, j, · · · )∗ is available, a portrait paper-cut is obtained
excluding hair and clothes which are handled in the post-
processing step.

4. POST-PROCESSING

4.1 Hair and Clothes
The post-processing of hair and clothes starts with the

detection of these two regions. Since the AAM includes the
position of the face, we use a simple spatial prior to first
detect the rough positions of the two regions (i.e., hair is
above the face, and clothes is below the face). We then
use the Graph-Cut algorithm [3] to refine the segmentation
of these two regions, with automatically generated scribbles
according to the rough positions.

During the creation of examples for our paper-cut tem-
plate dictionary, the artists have created many hair tem-
plates. To select a hair example in addition to the face
paper-cut obtained above, we select the one with the most
similar contour shape to the input photograph’s hair region,
in terms of the shape context distance metric [2]. As for
the clothes, since this region does not include many fea-
tures affecting our perception of the paper-cut, we simply
use a boundary-smoothed [8] version of the binary proposal
obtained in the bottom-up phase as the final result, with
edges added at its boundary to the background.

4.2 Connectivity
Based on directions from artists, we pre-defined a few

possible curves for enforcing the connectivity (i.e., all fore-
ground pixels are connected), which is an important char-
acteristic of traditional paper-cut. Typical positions of the
curves include: between eyebrows and facial contour, be-
tween nose and mouth, etc. Starting with all these curves
turned off, we randomly turn on a few of them (but at most
one for each pair of components) to achieve the connectivity.
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Fig. 10 Parse graph or a face image and its corresponding paper-cut [14].

Fig. 11 Paper-cut graphical
elements in ∆A for facial parts
used in the system of Meng et
al. [14]

2. REPRESENTATION

2.1 Paper-Cut Templates
We have asked professional artists to create red-and-white

images for portrait photographs using common interactive
image processing software, mimicking the paper-cut effects,
then manually decompose them into facial components (see
Fig.2 for a few examples). Keypoints describing the shapes
of these components are also manually annotated on the im-
ages. We then construct a dictionary of paper-cut templates,
including the above paper-cut portrait components and key-
points organized in a structural representation named And-
Or graph (AOG). The detailed usage of this dictionary will
be explained in Section 3.2.

2.2 And-Or Graph of Human Portraits
AOG is a hierarchical (tree-like) and compositional (part-

based) model for structural information representation, con-
sisting of alternate layers of And-nodes and Or-nodes down-
wards the tree from root node to leaf nodes. Each And-node
represents the decomposition of a structural pattern (e.g.,
object) into its constituent sub-structures (e.g., parts), while
each Or-node represents a virtual structural concept which
switches among multichotomous instances. Readers may re-
fer to the literature [6, 12] for detailed formulations of the
AOG model.

We use a 3-layer AOG to organize human portrait pho-
tographs, as well as the dictionary of paper-cut templates.
In this AOG, the root node is an And-node corresponding to
the generic face, which is decomposed into facial components
such as eyebrows, eyes, nose, mouth, etc.; each of them is an
Or-node switching among a number of leaf nodes in the next
level, corresponding to different instantial versions. For ex-
ample, the “nose”Or-node has children nodes corresponding
to instances of the nose region cropped from different source
images. We consider the leaf nodes as atomic components
which are usually perceived as single elements.

2.3 Parse Graph
While the whole AOG corresponds to a large number of

configurations due to the existence of Or-nodes, an instance
of the AOG, named parse graph, represents one specific ver-
sion by choosing one branch for each Or-node. In our case,
by selecting one specific mouth, one specific nose, etc., from
the template dictionary, we can put together a set of facial
components to form an entire face. Fig.3 visualizes the parse
graph of a face image and its corresponding paper-cut.

Through different combinations of sub-structures, the num-
ber of possible parse graphs which can be instantiated from
an AOG is much larger than the number of original exam-
ples used for constructing it. For example, in our case, we
can combine a left eyebrow, a mouth from, etc., from two
or more different original paper-cut templates into a new
instance. In this way, AOG’s great power of representation
can help us render various portrait paper-cuts once we have
a few representative templates.

3. COMPUTATION

3.1 The Bottom-Up Phase
We first localize the facial components in terms of their

corresponding keypoints (as shown in Fig.4(a)) using the
active appearance model (AAM) [4]. With the coordinates

Figure 2: Example paper-cut facial components in
our template dictionary.

of these keypoints, we are able to extract image regions of the
nose, eyes, eyebrows, etc., and we pass these image regions
to the next binary proposal step.

We use a dynamic thresholding method to compute bi-
nary proposals for the facial components. For each pixel, its
binarization threshold is computed using Otsu’s method [7]
inside its neighborhood window, thereby different pixels may
have different thresholds. By doing such binarization with
different window sizes, a binary sequence for each facial com-
ponent can be computed (see Fig.4(b)). It is noticed that
small window sizes tend to keep more details due to the
variation of local statistics over the spatial domain, on the
contrary, large window sizes tend to produce smooth results
by sharing similar global statistics among pixels close to each
other (since the overlapping area between neighboring win-
dows covers a large proportion of the window size).

For each facial component, we further select from the
above binary sequence one version that best matches the
original image in terms of total error. Let I be the origi-
nal image region and I′

k be the kth binary proposal in the
sequence, then we select

k = arg min
k

|V (I) − V (I′
k)| (1)

where V returns the sum of pixel intensities (8-bit gray-level
or (0, 255)-binary) in the image region. The selection of k
can be different for different facial components. Fig.4(c)
shows the composition of selected binary components using
the above method into a whole binary face image.

3.2 The Top-Down Phase
The top-down phase introduces prior information of artis-

tic paper-cut to improve the bottom-up proposal. With the
representation introduced in Section 2, the problem of gen-
erating a paper-cut by combining bottom-up and top-down
cues actually becomes to instantiate a parse graph from the
AOG of paper-cut template dictionary that best matches
the bottom-up proposal, to ensure that the paper-cut looks
like the original subject in the photograph.

We do this selection in the following way. Let

Ti,j,··· = {nosei, mouthj , · · · } (2)

be a set of leaf nodes in the above AOG that form a whole
face. Similarly, let

T ′ = {nose′, mouth′, · · · } (3)

be the bottom-up proposal including both the binary image
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Fig. 12 Example paper-cuts generated using the method of Meng et al. [14]
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Meng et al. [14] is so far the only work that studied the tradeoff between fidelity
and aesthetic in the rendering process. In this work, the fidelity is achieved by a
binary proposal generated from the source image using dynamic thresholding, as
shown in Figure 13, and the aesthetic level is controlled by the compatibility level
of the facial parts in the template dictionary ∆A. To obtain a tradeoff between the
two, a weighted sum of both cost functions

d +λc (3)

is measured, where d is the difference between the template image and the binary
proposal, and c is the number of template instances that the facial parts are selected
from, which is a metric of compatibility (assuming parts are more compatible if
they are from the same template). By tuning λ it is possible to obtain a continuous
spectrum from pursuing only likeness, to considering both with weights, then to
pursusing only aesthetic.

Fig. 13 The dynamic thresh-
olding algorithm for comput-
ing the binary proposal used
by Meng et al. [14]

Figure 3: Parse graph of a face image and its corresponding paper-cut.

(a) (b) (c)

Figure 4: The bottom-up phase corresponding to the example in Fig.1. (a) shows the AAM keypoints. (b)
shows the binary sequence of left eyebrow, left eye and mouth. (c) is the draft binary proposal.

and keypoints. We search for

(i, j, · · · )∗ = arg min
i,j,···

d(Ti,j,···, T ′) + λc(Ti,j,···) (4)

in which d is the distance between the template and the
proposal, c is the count of original instances that Ti,j,··· cov-
ers (i.e., the number of different original paper-cut templates
that the selected components are taken from), and λ is a tun-
ing parameter. Intuitively, small λ leads to better matched
facial components, while large λ leads to more compatible
components in the result (since more components tend to
come from the same original paper-cut) thus more consistent
global styles, at the cost that the result paper-cut may be
less similar to the same person in the photograph. In Eq.(4),
the distance function d is defined as the sum of Euclidean
distances between images of facial components in Ti,j,··· and
T ′ after warping the former using thin plate spline (TPS) [1]
to match the keypoints of the latter.

In implementation of the above search, we use a greedy
approximate algorithm:

1. Compute the distances between all pairs of correspond-
ing template and proposal components;

2. Construct an initial solution with template compo-
nents best matching the proposal individually;

3. Substitute the worst matched component in the cur-
rent solution with an alternative one that decreases
the total cost defined in Eq.(4) most. Iterate this step
until there is no better solution with lower cost.

Once (i, j, · · · )∗ is available, a portrait paper-cut is obtained
excluding hair and clothes which are handled in the post-
processing step.

4. POST-PROCESSING

4.1 Hair and Clothes
The post-processing of hair and clothes starts with the

detection of these two regions. Since the AAM includes the
position of the face, we use a simple spatial prior to first
detect the rough positions of the two regions (i.e., hair is
above the face, and clothes is below the face). We then
use the Graph-Cut algorithm [3] to refine the segmentation
of these two regions, with automatically generated scribbles
according to the rough positions.

During the creation of examples for our paper-cut tem-
plate dictionary, the artists have created many hair tem-
plates. To select a hair example in addition to the face
paper-cut obtained above, we select the one with the most
similar contour shape to the input photograph’s hair region,
in terms of the shape context distance metric [2]. As for
the clothes, since this region does not include many fea-
tures affecting our perception of the paper-cut, we simply
use a boundary-smoothed [8] version of the binary proposal
obtained in the bottom-up phase as the final result, with
edges added at its boundary to the background.

4.2 Connectivity
Based on directions from artists, we pre-defined a few

possible curves for enforcing the connectivity (i.e., all fore-
ground pixels are connected), which is an important char-
acteristic of traditional paper-cut. Typical positions of the
curves include: between eyebrows and facial contour, be-
tween nose and mouth, etc. Starting with all these curves
turned off, we randomly turn on a few of them (but at most
one for each pair of components) to achieve the connectivity.
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4 Oil-Painting

Besides sketch and paper-cut, another type of visual art in which portraiture plays an
important role is oil-painting. Portrait painting has also been studied in the artistic
rendering literature.

Zhao and Zhu [25] developed a system for rendering portrait paintings from pho-
tographs using active templates. The main idea of this system is similar to many
methods introduced above on sketching. However, due to the much more detailed
appearance in paintings than in sketches, the algorithms for depicting these details
are especially important for both likeness and aesthetic.

The system of Zhao and Zhu has a few crucial components.

• A dictionary of portrait painting templates. Artists are asked to paint portraits on
a screen with digitizer for given photographs, using image-example-based brush
strokes as shown in Figure 14. The color statistics (mean and variance), geome-
try (control points of the backbone curve), and texture (example ID in the brush
dictionary [26]) of each stroke for composing the portrait are recorded. Then for
each portrait painting we have the complete information about the sequence of
brush strokes, as shown in Figure 15b (only part of the strokes are visualized).
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A dictionary of these portrait painting examples with their corresponding pho-
tographs is constructed, as shown in Figure 16, which are used as templates later
in rendering.

• A representation of the spatial configuration of the face and the brush strokes.
For each instance in the dictionary, the shape of the face is captured using an
active appearance model (AAM) [6] with 83 landmarks. The positions of these
landmarks are put in the same coordinate system as the control points describing
the geometry of the brush strokes. Shape matching between two different faces
(e.g., an input photograph to paint from and a reference example in the dictio-
nary) are achieved by computing a Thin Plate Spline (TPS) transformation [1]
between the coordinate pairs of their AAM landmarks.

• A brush stroke rendering algorithm. Given an input face photograph, in order to
synthesize a corresponding portrait painting, we first select a reference example
from the dictionary of templates. Then we compute the TPS transformation from
the shape of the reference example to that of the input photograph. After that,
this TPS transformation is applied to the control points of all brush strokes in the
reference example, and the output control points with new coordinates defines
the new geometry of the strokes for composing the portrait corresponding the
input photograph, as shown in Figure 15c. Finally, the color of each brush stroke
is transferred to match the color of the target photograph, and the brush strokes
are superimposed to compose the result painting image, as shown in Figures 15d
and 15e.

(a) (b)

Figure 2: Example portrait paintings rendered using previous
methods. (a) is cropped from Fig.10b of Zeng et al. [2009], which
is almost like a photograph. (b) is rendered with small and high-
opacity strokes placed according to a generic orientation field (gen-
erated by diffusing the facial structure sketches, as shown by the
black segments connecting the blue dots in Fig.5) [Hays and Essa
2004; Zeng et al. 2009]. This approach blurs out details and does
not convey a strong impression of 3D structures as good portrait
paintings usually do (e.g., the two paintings in Fig.3).

(a) (b)

Figure 3: Faces cropped from real portrait paintings. (a) is from
a practice portrait by Yifei Chen, which is depicted with large and
decisive brush strokes, conveying a strong impression of 3D struc-
tures. (b) is from a self portrait by Paul Gauguin, which contains
vibrant colors usually not existing in realistic portrait photographs.

(a) original brush stroke (b) morphed brush stroke

Figure 4: Our brush stroke model. The brush texture maps are bor-
rowed from the dictionary of Zeng et al. [2009]. The morphing is
performed using thin-plate spline (TPS) transformation [Barrodale
et al. 1993] based on backbone control points (red and blue dots),
and texture mapping based on the quadrilateral mesh (gray grids).

Figure 5: The facial structure model we use contains 83 landmark
points (blue dots) computed using the active appearance model
(AAM) [Cootes et al. 2001]. Photograph courtesy of graur razvan
ionut @freedigitalphotos.net.

To address these problems, we propose an example-based method
to render portrait paintings from photographs. We ask artists to
make portrait paintings and record the sequences of strokes they
paint using a fully manual digital painting system adapted from
Zeng et al. [2009]. With their help, we build a dictionary contain-
ing over 100 portrait paintings with complete information of their
stroke-by-stroke generating processes. The dictionary covers faces
of different genders, ages, ethnic groups, poses, etc. With this dic-
tionary, we render painterly portrait images by transferring brush
strokes from source portraits painted by artists. In order to reuse
these source portraits as templates for rendering various target im-
ages, we demand that their shapes should be able to deform, and
their colors to shift, so we call them active portrait templates.

Compared with existing generic painting methods in the literature,
the stroke sequences in our active portrait templates carry infor-
mation about not only the facial structure but also how artists de-
pict the structure with large and decisive strokes and vibrant col-
ors, therefore our method can overcome the challenges mentioned
above. Fig.1 shows an example of our results, in which the three
paintings are rendered from the photograph in Fig.5 with different
templates from our dictionary.

2 Related Work

To our knowledge, there is not much dedicated work on portraiture
in the painterly rendering literature. DiPaola [2007] described a

knowledge-based approach for painterly rendering of portraits, but
this work focused mainly on the general methodology rather than a
detailed rendering algorithm, and did not take advantage of the rich
structural information of human faces.

In some other areas of non-photorealistic rendering, the depiction
of human faces has been widely studied, for example, graphite or
color sketch [Li and Kobatake 1997; Chen et al. 2002a; Chen et al.
2002b; Chen et al. 2004; Luft and Deussen 2004; Gooch et al. 2004;
Tresset and Leymarie 2005; Min et al. 2007; Wang and Tang 2009],
artistic binarization/paper-cut [Meng et al. 2010], cartoon [Chopra
and Meyer 2003], etc. Most of these methods take advantage of
some facial structure information such as hierarchical facial repre-
sentations and full 3D geometrical models, and can achieve very
nice results.

3 Active Portrait Template

In our dictionary of portrait paintings T = {Tk, i = 1, 2, · · · , K},
each active portrait template Tk consists of its original portrait pho-
tograph Ik which has a facial structure Fk, and its sequence of
brush strokes Sk painted by artists.

Brush Stroke Model. For modeling brush strokes, we borrow
brush texture maps from the dictionary of Zeng et al. [2009], and
adopt a curved stroke model, as shown in Fig.4. In addition to the
texture map, each brush stroke has the following attributes:
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Fig. 14 The example-based brush stroke model used by Zhao and Zhu [25].

(a) (b) (c) (d) (e)

Figure 6: Our rendering pipeline. (a) is a template selected from the dictionary (the one in Fig.7c). (b) displays only a few strokes of (a) on
the canvas for better illustration. Using stroke position transformation we generate (c) from (b), and using stroke color shift we generate (d)
from (c). Continuing with (d) to have all strokes painted, we get the final result (e). During position transformation, some strokes near the
forehead go outside the facial region on the target photograph (obtained using interactive segmentation [Zeng et al. 2009]) and are deleted.

1. A list of backbone control points (as marked by the red and
blue dots in Fig.4),

2. The stroke width, which equals the distance between the two
rows of blue dots on each side of the stroke, and

3. The stroke color. Our artists have the freedom to choose
their desired colors for the brush strokes, and their choices
are recorded in the templates.

In order to morph a brush stroke from the dictionary (e.g., Fig.4a)
to match a stroke path on the canvas (e.g., a curve passing through
the red dots in Fig.4b), we first compute the positions of the blue
dots by offseting the red dots along the normal directions of the
path. The normal directions are computed by approximating the
path with a Catmull-Rom spline interpolating the red dots [Catmull
and Rom 1974], and the offset distance is half of the stroke width.
Then we compute a thin-plate spline (TPS) transformation [Barro-
dale et al. 1993] between the pairs of source and target dot positions
(e.g., between the corresponding backbone control points in Figs.4a
and 4b), and apply the transformation to the vertices of a quadri-
lateral mesh covering the source brush stroke to get the deformed
mesh. Finally, we compute a texture mapping using the mesh, with
a bilinear interpolation inside each quadrilateral.

Facial structure Model. For the facial structure Fk, we use
the representation introduced in the active appearance model
(AAM) [Cootes et al. 2001], which contains 83 landmark points: 8
for each eye, 8 for each eyebrow, 14 for the nose, 12 for the mouth,
and the rest 25 for the face contour (as shown in Fig.5). These land-
mark points are computed using AAM on the source photographs of
the portrait templates, and manually fine-tuned for better accuracy.
Using this representation, Fk is a 166-dimensional vector contain-
ing the (x, y)-coordinates of the 83 landmarks.

4 Rendering

We render a portrait painting from a given portrait photograph by
transferring strokes from one of our templates in the dictionary. To
do this, we need to select a template, then compute a transformation
for the strokes in the template, to obtain their new positions accord-
ing to the shape difference between the template and the target face,
and their new colors according to the color difference between the
template and the target photograph. Our rendering pipeline is illus-
trated in Fig.6.

Template Selection. We use a semi-automatic template selection
strategy. The system computes a distance between the target por-
trait photograph IT and the photograph Ik of each template in the

dictionary, and presents the top-10 templates with the smallest dis-
tances, from which the user can select one according to his/her de-
sired styles. We use a distance metric

D(IT, Ik) = ↵DS(IT, Ik) + (1 � ↵)DC(IT, Ik), (1)

in which DS and DC are the shape and color differences, respec-
tively, and ↵ is a user-specified parameter balancing the two.

To compute the shape difference, we first do a principal component
analysis (PCA) on all facial structure vectors Fk, k = 1, 2, · · · , K
in the dictionary, which yields a linear transformation

F0
k = (Fk � F0)WF, (2)

in which F0 = 1
K

PK
k=1 Fk contains the mean landmark coor-

dinates, WF is the PCA projection matrix, and F0
k contains the

projected coordinates in a reduced-dimension space (we use 5 di-
mensions) spanned by eigenvectors of the covariance matrix of
Fk � F0, k = 1, 2, · · · , K corresponding to the 5-largest eigen-
values (so F0

k is a 5-dimensional vector). We apply this PCA trans-
formation to the landmarks FT of the target photograph IT (also
computed using AAM and manually fine-tuned by the user if nec-
essary) to get F0

T = (FT � F0)WF. Then the shape difference is
computed with the Mahalanobis distance

DS(IT, Ik) =
q

(F0
T � F0

k)⇤�1
F (F0

T � F0
k)>, (3)

in which ⇤F is a diagonal matrix containing the 5-largest eigen-
values of the covariance matrix of Fk � F0. The purpose of using
PCA here is to work in a reduced-dimension space (from 166 to
5 in our case) for faster computation, since we only need to com-
pute the PCA once on the dictionary and use it for all future target
photographs.

To compute the color difference, for each template, we compute a
TPS transformation from its landmarks Fk to the mean coordinates
F0, then morph its photograph Ik to Jk using the TPS. Similarly,
we morph the target photograph IT to JT using a TPS transforma-
tion from FT to F0. In this way, all photographs are aligned accord-
ing to the landmarks. After resizing the images to the same reso-
lution, DC is computed using PCA again (i.e., the distance used in
the Eigenface method [Turk and Pentland 1991]):

J0
k = (Jk � J0)WJ, (4)

J0
T = (JT � J0)WJ, (5)

DC(IT, Ik) =
q

(J0
T � J0

k)⇤�1
J (J0

T � J0
k)>, (6)
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(e)

Fig. 15 Pipline of the portrait painting system of Zhao and Zhu [25]. See explanations in the text.
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Fig. 16 Example portrait painting templates from the dictionary constructed by Zhao and Zhu [25].

Fig. 17 Example results generated using Zhao and Zhu’s system [25].

Figure 17 displays example results generated using Zhao and Zhu’s system. In
this system, the face fidelity factor is taken care of by the AAM landmarks and a
few detailed algorithms in the portrait painting system.

• Template selection. For a given input photograph, the top-10 best matched exam-
ples from the dictionary in terms of both shape and appearance are reported for
selection. This avoids using templates differing too much from the target image,
which may potentially cause problems in likeness and rendering.

• Shape matching and stroke deformation. Shapes of different faces are matched
through the 83 AAM landmark points. Using stroke deformation defined by the
matching between landmarks, it ensures the strokes are rendered at appropriate
positions with correct curvatures to depict the facial surface and parts.

• Stroke color transfer, which maps the colors of all strokes to the target photograph
in a coherent way. This contributes crucially to preserving the global appearance
of the original photograph.

The artistic style factor and the aesthetic is supported by the portrait painting
dictionary, including
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• The sequence of sparse but decisive and colorful strokes which, while put to-
gether, convey an impression of 3D structures and vibrant contrasts, and

• The individual textured brush strokes, which deliver elegant oil-painting details
with illumination and shading.

5 Caricature

Caricature is a very special type of portrait images. It differs from traditional sketch,
paper-cut and painting in the way of manipulating the two factors we study in this
chapter. Most caricatures explicitly trade certain degree of fidelity for unique aes-
thetic effects, for example, by exaggerating features in several parts of the face.

Tominaga et al. [18, 19] developed the PICASSO facial caricaturing system. In
the PICASSO system, 445 characteristic points are located on the edges of facial
parts, and various expressions are defined as offsets of these points from a mean face
(without expression), as shown in Figure 18. The idea of delibrately manipulating
the facial shape for caricaturing and further exaggeration is the basis of most later
studies on portrait caricatures.

Fig. 18 In PICASSO [18, 19],
445 characteristic points with
contour lines are used for
representing the facial shape,
and a static representation of
expressions is by offseting
these points.
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facial expressions. As clearly known from the 
caricatures drawn by professional caricaturists, 
facial motion features are activated even in a still 
caricature. Figure 1 shows a typical example of a 
caricature with smiling gesture which is expressed 
by a slight wrinkle around the mouth[l]. This fact 
means that not only spatial dimensionality but also 
time dimensionality should be utilized to empha- 
size the individuality features[2]. From this view- 
point, we had already augmented the spatial di- 
mensionality to generate 3D caricatures with 
range data[3]. In this paper, we propose a new idea 
to extend the extraction mechanism of the indi- 
viduality features to the time-axis in addition to 
spatial extension[4] [5]. 
Concretely, from a series of motion expressions, 
we extracted from start to end frames as the time 
period of the individuality feature, and generate a 
dynamic caricature by exaggerating the features 
inhering in the time dimension by using the in- 
betweening method. 

From some experiments by using smiling motion 
images, we could experimentally confirm that it 

was possible to realize the spatial and time- 
dimensional deformations simultaneously. 

2. Basic Method for Face Defor- 
mation and its Extended Expres- 
sion 
2.1. Basis of Facial Caricaturing. 
First we explain the basic method for face defor- 
mation in PICASSO system. Hereafter, let a face 
at the time t be represented by 

F, ={(xi,yi;t) I i=1,2,*-- ,N} (1) 

Then, the principle of PICASSO to generate a 
caricature is qualitatively formalized by 

Q = P + b . ( P - S )  (2) 

where P is a primal input image, S is the reference 
( concretely I '  mean face " ) and Q is the generated 
caricature of P controlled by the exaggeration 
weight b [2]. 

2.2. New paradigm of Face Data 
Expression 
In addition to the basic expression of face data in 
facial caricaturing where contours of facial parts 
are represented by 455 edge points ( Fig.2 ), the 
following extensions could be expected to enforce 
the facial caricaturing. 

(1) side-view face[6]. 
Side-view face can represent 3-D shape of the 
face not perfectly but to some extent. Simul- 
taneously, since details of the facial parts are 
occluded by oneself, it would become easier 
to recognize them for facial caricaturing. 

(2) 3-D face data[3]. 
Since it has already become easy to acquire 
3D face data directly by 3D range camera, we 
can extract and deform 3D facial features 
such as acute nose in facial caricaturing. 

(3) Touch of line, gray and color information 
The smoothness and thickness of the contour 
line could be improvable, and moreover gray 
and color information could be available for 
the better caricaturing. 

(4) Two kinds of emotion expression 
There always exists emotion expression in 
face, and we can utilize two kinds of it. One is 
a static representation of emotion as shown in 
Fig.3, and another is a dynamic representation 
of the process of emotion expression which 
could be regarded as a gesture deformation of 
emotion. 

Though many researches conceming from ( 1 )  to 
(3) aspects have been tried, but there is no report 
on (4) aspect up to now. 

Figure 2. Characteristic points and contour lines 
of a face. 
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Figure 3. A laughing caricature in the still 
representation. 

3. Exaggeration of Facial Ex- 
pression 
3.1. Motion Exaggeration in Carica- 
turing 
The exaggeration of motion in caricaturing can be 
divided into two categories : (1) shape exaggera- 
tion in spatial dimensions of the x and y axis, and 
(2) transition exaggeration in time dimension of 
motion images. In both categories, the basis of the 
exaggeration can be realized by the following 
procedures : extraction process of individuality 
features by comparing with mean face and defor- 
mation process of the individuality features by 
using in-betweening method. 
In the following normalization, the time counter of 
the image recorder was initialized to coincide the 
start moment of laughing with each other. Figure 4 
demonstrates the correspondences among each 

frames of person 1 - M. Here, “smile-start’’ 
moment is defined as the moment when a part of 
facial parts begins to move, and “smile-end” 
moment is defined as the moment when one of 
them begins to move reversely. The images of 
each person between smile-start and smile-end 
moments are sampled by the same number of 
frames. 
By the way, the time duration of laughing of a 
person P is defined by 

and the average time duration is defined by 

for M persons. The motion feature of the laughing 
of a person P can be exaggerated by 

where k in eq.(5) is a parameter of exaggeration 
weight. 

3.2. Shape Exaggeration 
Each mean face for the successive respective 
image frame must be introduced in order to ex- 
aggerate the shape of the facial parts by the same 
principle given by eq.(2). 
To realize this procedure, let the time duration 
defined by eq.(3) be normalized by 

Figure 4. Correspondences between each frames of person 1 - M. 
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As an improvement over PICASSO, Obaid et al. [17] also presented a system for
rendering and animating expressive caricatures. Their system subdivides the face
into 16 muscle-based regions, and models different expressions as second-degree
rubber-sheet deformations of the 16 regions. In this way, the expressions can be
exaggerated by manipulating the coefficients in the rubber-sheet transformation. An
example is shown in Figure 19.

Liang et al. [12] extended the sketching method of Chen et al. [2] with exagger-
ation for generating facial caricatures, whose framework is shown in Figure 20.

In its prototype-based shape exaggeration model, the training examples are ana-
lyzed and clustered into a few exaggeration prototypes. Each prototype represents
a trend of exaggeration in some facial features, towards which the sketch image
is warped using a local linear model at runtime to generate caricatures. Figure 21
displays two examples of exaggerated caricature generated by this system.
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Fig. 19 Caricature exaggeration levels of the smile facial expression, by Obaid et al. [17]
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Figure 3. System framework for training phase and runtime phase.

At runtime, for a given image I , we extract the face shape
using ASM [6]. Then, the Shape ExaggerationModel is em-
ployed to generate the exaggerated shape. Combined with
an example-based sketch generation system, we can get the
final sketch-style caricature with exaggeration.
Figure3 shows various steps in both the training phase

and the runtime phase. Detailed algorithms of shape exag-
geration are discussed in the next two sections.

3. Shape exaggeration

3.1. Scaling the difference

Training examples include the original shape Si and ex-
aggerated shape S0

i, where both are aligned to the mean
shape Smean. Then Si and S0

i can be reconstructed as:
S = Smean + ∆S,S0 = S + ∆S0 , where ∆Sis the dif-
ference between an individual face shape and the mean face
shape, and ∆S0 is the exaggerated part of the caricature
shape with respect to the original shape. We aim to learn
the relationship between ∆S and ∆S0 , i.e. ∆S0 = f(∆S)
.
The simplest way to exaggerate is to scale,∆S0 = b∆S,

where b is the exaggeration weight. This is the approach
used in previous work of the PICASSO system [13]. Obvi-
ously simple scaling is not enough to learn the artist’s style
of exaggeration; therefore the generated results are not sat-
isfactory.

3.2. K-Nearest Neighbors (KNN)

Since the mapping relationship between ∆S and ∆S0

cannot easily be described by a global parametrized model,
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Figure 4. The k nearest neighbors(S)
founded by Euclidean distance, exaggerated
shapes(S’) are exaggerated in different ways.

the kNN algorithm can be used to estimate ∆S0 using a
local linear model∆S0 = [∆S0

1, ∆S0
2, ..., ∆S0

k]w, where w
is the weight which satisfies ∆S = [∆S1, ∆S2, ..., ∆Sk]w
by means of least squares.

However, the k neighbor faces found using the Eu-
clidean distance measurement may well be exaggerated
by the artist in different ways, as in our training set
shown in Figure 4. This means the weighed sum ∆S0 =
[∆S0

1,∆S0
2, ..., ∆S0

k]w will become an average of different
exaggeration directions and degrees, thus the face cannot
be exaggerated notably. Another problem of the KNN ap-
proach is that the distance measurement cannot capture the
subtle facial features selected by the artist, such as the dis-
tance between the eyes. Note that we have tried other dis-
tance metrics such as Mahalanobis distance but there is no
improvement.

Fig. 20 Framework of the example-based caricature generation system of Liang et al. [12]
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Figure 8. Selected prototypes for new shape
with evidence measurement.
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Figure 9. Two examples of exaggerated cari-
cature.

Since the correlation between feature space T and U
found by PLS is high, solving the local linear model in
such feature spaces is more reasonable. So we first project
∆Snew into feature space T to get tnew, then in T find the
least squares solution so that tnew can be best linearly ap-
proximated by the original shape features of prototype, such
that tnew =

P
k wktk. In order to guarantee that ∆Snew is

exaggerated in the same direction as the samples of the pro-
totype, a least squares solution is found under constraints
wk ∏ 0. The weights are then translated to the exaggerated
shape feature space U to get unew =

P
k wkuk. Finally

∆S0
new is reconstructed from unew.

5. Experimental Results

Finally we can generate caricatures for a given image of
a frontal face by simulating the artist’s style. We have ap-
plied ”leave-one-out” approach to generate the caricatures,

 

 

 

   

   
(a) SS Δ=Δ 5.0'  (b) SS Δ=Δ '  (c) kNN 
 

 
   
Figure 10. The results of compared methods.
(a)∆S0 = b∆S , b = 0.5 (b)∆S0 = b∆S, b=1.0
((a), (b) are PICASSO system’s method) (c)
kNN using Euclidean distance measurement.

without using its own caricature in the training process. Fig-
ure 9 shows some of the caricature sketches generated by
our system. We can see that the exaggerated caricatures are
more impressive than unexaggerated ones.
Figure 10 compares the prototype-based method with

the kNN method and PICASSO system. As we can see,
the prototype-based method can exaggerate facial features
more markedly and impressively, without the averaging ef-
fect shown by other approaches.
More results are shown in Figure 11. We also apply the

exaggeration to the original images and generate interesting
results. Also, we compare them with the artist drawings.
We can see that our system can capture the same notable
features selected by the artist, and exaggerate these features
in a similar style.

6. Conclusions

We have presented an example-based exaggerated car-
icature generation system. Our system can automatically
identify facial features from input images, and exaggerate
such features simulating the artist’s style. By decoupling
the caricature generation into two parts, shape exaggeration
and texture style mapping, our caricature system can learn
the artist styles of both parts. A new prototype-based ex-
aggeration model is employed to learn how artists identify
facial features and the way artists exaggerate them. Based
on our model, some main facial features can be obviously
exaggerated in a proper direction.
Since we define prototypes only based on principal com-

ponents directions, the exaggeration directions determined
by our model are limited. In fact the facial features selected
by the artist to exaggerate may cover different prototypes,
so a more effective way should be found to combine proto-
types to exaggerate a new input face.

Fig. 21 Two examples of exaggerated caricature generated by the system of Liang et al. [12]
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The additional exaggeration module to the system of Chen et al. essentially re-
duces the level of face fidelity while enhancing features exaggerated in training
examples which reflects a type of aesthetic.

Luo et al. [13] developed a semi-automatic caricature system which enables man-
ually capturing much finer details of the structures of facial parts in WA, such as the
eyeballs and the bridge of the nose, as shown in Figure 22a. An example of their
result is shown in Figure 22b.

  
 

  
Figure 4. Left: Original pictures. Right: Marked with key points (yellow, blue) and control points (red). 

3.3 Facial Features Drawing 
 

We have mentioned that each pair of neighboring points 
has its own function of the Bezier curve. These functions are 
very simple but their result can simulate those actual 
outlines very closely. We know that a curve is completely 
defined by four points – known as control points – p0, p1, p2 
and p3. Because p0 is the starting point and p1 is the end 
point, we set the pair of points as p0 and p3. We separate the 
interval between p0 and p3 into 3x3 equal parts so that p1 
and p2 are always at the boundaries depending on different 
circumstances. An example of the control points of a right 
eye is shown in Figure 4. 

 
3.4 Hair Drawing 
 

Drawing hair is one of the important parts of our system 
because a face without hair is not natural. Users can indicate 
four points to let our system know where the hair is. Those 
four points are respectively responsible for the locations of 
upper–right, upper–left, lower–right, and lower–left. 
Beginning with those four points, we find black hair by the 
bread-first search (BFS) algorithm. If the color value 
difference between the next pixel and the current pixel is 
over a threshold, we mark that next pixel as the hair 
boundary. 

 
3.5 Tone–Shading 
 

The purpose of coloration is to emphasize the three–D 
effect. We don’t color the face depending on the input 

 

 

Figure 5 .Hair drawing algorithm 
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 (a) (b) (c) 

Figure 1: (a): Input picture captured by digital camera. (b) Output picture without exaggeration. (c) Output picture with our 
exaggeration rules for big nose and big mouth. 

 
Abstract 

 
A new NPR system is proposed in this paper to generate a 

facial caricature from a 2–D picture. In human perception, 
we recognize a person by seeing his feature parts and the 
outline of his face. Our system can exaggerate the feature 
parts and still keep the overall impression. First, we must 
have the information about the outlines of the facial features 
to determine the characteristics of the features. Because the 
facial features are too complicated, we obtain the 
information of the features manually. We can simulate the 
actual outlines of facial features by knowing only some key 
points. After obtaining those key points of facial features, we 
can decide which facial feature should be exaggerated based 
on rules. Finally our system renders a new pictorial in a 
non–photorealistic rendering (NPR) system using bold edges 
and large regions of constant shade. 
 

Keywords: 
caricature, non–photorealistic rendering, tone–shading 

 

1 Introduction 
 

Most of non-photorealistic rendering (NPR) techniques 

are driven by human perception that often concentrates on 
actual proportion and size. The general differences between 
real and NPR pictures are the pencil style of the outlines and 
the color distribution of the picture (e.g., [2, 3, 4, 5, 6, 7]). 
However, pictures that contain exaggerated features are 
sometimes more attractive to people. In general, “caricature” 
is a style of drawing a pictorial in which the subject’s 
distinctive features are deliberately exaggerated to produce a 
comic or funny effect. Exaggeration causes the ratio of the 
subject to change, and allows the people who see the 
subjects to have a deeper impression. Our system is 
implemented in NPR ways, furthermore, our system uses 
tone-shading rendering to color the pictures, making the 
pictures more interesting. 

Our system focuses on drawing human faces. The most 
distinctive part of human faces is that everyone’s face is 
unique. This way, we can identify who someone is by 
looking at his face and his special features. We can detect 
some obvious features from a person’s looks, as evidenced 
by our association of a big nose with the movie star Jacky 
Chan and a big mouth with another movie star Julia Roberts. 
In addition, we sometimes determine whether two people are 
similar to each other by observing if they have the same 
feature parts. 

A human face is so complex that face recognition is quite 

(b)

Fig. 22 (a) Structure models of the eye and nose captured by Luo et al. [13] (b) An example
result generated by their system. From left to right: input photograph, unexaggerated caricature,
and exaggerated caricature.

.

Mo et al. [16] noticed that the exaggeration level should depend not only on the
absolute difference from the mean shape, but also the variance level of such differ-
ences among examples. This idea enables the comparison between the exaggeration
levels of different facial parts which corresponds better to our perception. Figure 23
displays two of they results.

Fig. 23 Two example results
generated using the method
of Mo et al. [16] From left
to right: input photographs,
photorealistic caricatures, and
stylized caricatures.
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1 Introduction 

This sketch presents an improved formalization of automatic 
caricature that extends a standard approach to account for the 
population variance of facial features.  Caricature is generally 
considered a rendering that emphasizes the distinctive features of 
a particular face.  A formalization of this idea, which we term 
“Exaggerating the Difference from the Mean” (EDFM), is widely 
accepted among caricaturists [Redman 1984] and was first 
implemented in a groundbreaking computer program by [Brennan 
1985].  Brennan’s “Caricature generator” program produced 
caricatures by manually defining a polyline drawing with 
topology corresponding to a frontal, mean, face-shape drawing, 
and then displacing the vertices by a constant factor away from 
the mean shape. Many psychological studies have applied the 
“Caricature Generator” or EDFM idea to investigate caricature-
related issues in face perception [Rhodes 1997]. 
 
 
 
 
 
 
 
However, the EDFM method may not produce the best 
caricatures.  As shown in Fig 1, the distinctiveness of a displaced 
feature not only depends on its distance from the mean, but also 
its variance (shown as circles in the figure).  For example, the 
width of the mouth is much more widely distributed than the 
width of eyes.  Thus, a mouth 2cm wider than the mean may still 
look normal, whereas eyes 2cm wider than the mean will be very 
distinctive.  In the EDFM method, however, both the mouth and 
eye width will be emphasized by a same factor because their 
DFMs (Difference-From-Mean) are the same. 

This sketch describes a method to produce caricatures based on 
both feature DFMs and feature variance. 
 
2 Method 

Three-hundred frontal faces from the FERET database were 
selected as training examples to learn a “face space”; on each 
face, 94 points were hand-labeled to represent the shape.  A 
188x300 shape matrix S is constructed, a column of which 
consists of x and y coordinates of a training shape.  Non-negative 
matrix factorization [Lee and Seung 1999] is applied to the S to 
learn the face space dimensions: 

S = F * E 
 
Each dimension consists of a basis vector fi (the i-th column of 
matrix F) and its distribution (expectation mi and standard 
deviation σi of the i-th row in matrix E). Each dimension 
represents an abstract facial feature. 
 
 

*email: zmo@graphics.usc.edu 
†email: zilla@computer.org 
‡email: uneumann@graphics.usc.edu 

Now given a new face photograph, the shape s can be 
automatically located with an Active Appearance Model in some 
cases (frontal face, simple lighting).  If the AAM fails, the shape 
points are manually placed, which takes several minutes at most.  
The shape s is then represented in the face space as a non-negative 
linear combination of the basis vectors and a residual: 

¦¦ +⋅+=+⋅=
i
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i
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The shape is exaggerated by scaling the DFM by a factor k on the 
dimensions where |||| iii me −=δ  is larger than iσ⋅2 : 

¦ ⋅⋅+⋅⋅+=
i

iiii rkftms *** 5.0)(' δ  

We set ti=1 if ii σδ ⋅< 2||  and ti=k if ii σδ ⋅≥ 2|| .  The residual r 
may consist of distinctive features that cannot be represented in 
the face space and/or noise; thus, r is also exaggerated, but with a 
reduced scale. 

A photo-realistic caricature is produced by image warping from 
original shape s to the exaggerated shape s′.  Further applying 
Non-Photorealistic Rendering techniques generates a stylized 
line-drawing caricature.  Some results are shown in Fig 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: results.  Left, original faces; middle, photorealistic 
caricatures; right, stylized caricatures. 

 
References 
 
Brennan, S. E. 1985. Caricature generator: the dynamic exaggeration of 
faces by computer. Leonardo 18, 3, 170-178. 

Lee, D-D. and Seung, H-S. 1999. Learning the parts of objects by non-
negative matrix factorization. Nature 401, 788-791. 

Redman, L. 1984. How to draw caricatures. Contemporary Books. 

Rhodes, G. 1997. Superportraits. Psychology Press. 

A       B 

Figure 1: features A and B are
moved the same distance from
their means, but when their
distribution is considered, A is
distinctive whereas B is not. 
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Fig. 24 An example result
generated using the caricature
algorithm of Chiang et al. [4]

2. Size adjustment: The size of the bounding box of 
the exaggerated shape is used to shrink or expand 
the component as a whole.   

3. Final node placement: Spatial relationship among 
the face components has to be considered to ensure 
correct placement. This is achieved by placing the 
nodes with higher ranks first. The master point of 
each group is taken as the basis for detecting 
overlaps or collisions as a result of magnification or 
excessive shift. Other points in the group shift 
accordingly with the master node. 

 
4.2. Image Metamorphosis 
 
Caricature generation is formulated as a warping process 
in our approach. A feature-based image metamorphosis 
method is employed [10]. To begin with, an artist’s work 
is selected as the source image, whose feature nodes have 
previously been labeled. For every input image, feature 
extraction and exaggeration rate estimation is performed 
as described in Section 3. We then use the exaggeration 
rate for each component to adjust the positions of the 
nodes, from high rank to low rank ones. A modified face 
mesh thus generated will contain the destination nodes for 
the warping process. If a different style of caricature is 
preferred, simply choose another caricaturist’s work as 
the source image.  
 

 
(a)                        (c)                         (e) 

 
(b)                       (d)                          (f) 

Figure 10. (a) A subject with the original face mesh 
overlaid. (b) Modified node positions after shape 
exaggeration. (c) An artist’s work. (d) Caricature 
generated based on (c). (e) Another artist’s work. (f) 
Caricature generated based on (e). 
 

5. ILLUSTRATIONS 
 
Figure 11 presents the caricature drawings of three 
different subjects using the same source image.  Since the 
same artist’s caricature is used, all drawings share a 
common style. Different parts of the face, however, are 
emphasized to various degrees. For example, the eyes of 

subject in Fig. 11a are relatively small and have a unique 
orientation. These properties are amplified in the 
generated caricature.  Similarly, the subject in Fig. 11c 
has large eyes and full lips, resulting in a caricature that 
further emphasizes these traits. 
 

     
 (a)       (b) 

     
 (c)      (d) 

     
(e) (f) 

 
Figure 11. (a)(c)(e) Original input images. 
(b)(d)(f) Corresponding caricatures. 
 

6. CONCLUSIONS 
 
We have introduced an efficient approach for generating 
caricature drawings using only one existing caricature as 
the reference. An organized way for defining and 
estimating the face components and the associated 
parameters has been developed. By combining effective 
feature analysis with the proposed face model, caricature 
generation is converted into a simple image warping 
process.   

The current prototype considers only the spatial 
relationship among the groups. Future system will also 
pay attention to the relative node position within each 
group to achieve more accurate shape definition. In 
addition, skin texture analysis and hair style classification 
will be included to enable the production of more 
appealing caricatures. 

Another interesting work on caricature was presented by Chiang et al. [4], which
adds exaggeration upon a mesh-based representation for facial geometry (similar to
Wang and Tang [21]) instead of the contour-based ones used by Tominaga et al. [18,
19], Obaid et al. [17], and Liang et al. [12]. This enables more details in color and
texture in the rendered caricature, as shown in Figure 24.

6 Summary

In this chapter, by reviewing recent work on artistic rendering of portraits, we have
studied its two essential factors, namely the face fidelity factor supported by certain
face representations stored in WA, and the artistic style with graphical elements and
rendering details defined in ∆A, as introduced in Section 1. In most methods, these
two factors are implemented in a few different solutions.

• The fidelity is usually enforced at two different levels. At the local level of de-
tails of facial parts, certain similarity measures are adopted between the pho-
tograph and the artistic depiction or implicitly applied by defining a map-
ping/transformation between them. At the global level of the face, certain shape
models are adopt such as ASM, AAM or triangular mesh to constrain the spatial
configuration of the facial parts. Besides, the And-Or Graph model has also been
applied to integrate the two levels (or more levels) in a single hierarchy.

• The artistic style is usually applied by using training example art pieces or el-
ements created by artists, in addition to some simple rule-based strategies for
straightness, smoothness, etc. In caricature, its unique style is mainly attributed
to the exaggerated features which are also learnable from training examples.

Guided by the two factors, past studies on artistic rendering of portraits took various
ways to the pursuit of likeness and aesthetic in portraiture.

Despite the progress, a few key questions still remain unclear, which stand in our
way to a systematic theory and solution to the portrait rendering problem.



20 M. Zhao and S.-C. Zhu

• How should we select the important information from WN to be used in WA?
In practice, this means to choose a facial model that captures features essential
to artistic perception and ingores unimportant parts. Also, what is the minimum
information we need in WA to satisfy the likeness principle?

• Is there a principled method for balancing between likeness and aesthetic, or
can these two be separated for independent manipulation under certain circum-
stances? The study of Leopold et al. [9] gives us some hints on this question,
which tells that extrapolation against a mean face can preserve a person’s iden-
tity without being confused with other people in the experimental dataset. This
supports the caricature rendering methods based on shape exaggeration which
improves the aesthetic without giving up the likeness. Meanwhile, a comprehen-
sive investigation to this problem has yet to be conducted.
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