Skip to main content

A Cooperative Multi-objective Optimization Framework based on Dendritic Cells Migration Dynamics

  • Conference paper
  • First Online:
Research and Development in Intelligent Systems XXIX (SGAI 2012)

Abstract

Clonal Selection and Immune Network Theory are commonly adopted for resolving optimization problems. Here, the mechanisms of migration and maturation of Dendritic Cells (DCs) is adopted for pursuing pareto optimal solution( s) in complex problems, specifically, the adoption of multiple characters of distinct clones of DCs and the immunological control parameters in the process of signal cascading. Such an unconventional approach, namely, DC-mediated Signal Cascading Framework further exploits the intrinsic abilities of DCs, with the added benefit of overcoming some of the limitations of conventional optimization algorithms, such as convergence of the Pareto Front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oates, R., Kendall, G. & Garibaldi, J.M., Classifying in the presence of Uncertainty: A DCA Perspective, ICARIS 2010, pp. 75-87 (2010)

    Google Scholar 

  2. Oates, R., Greensmith, J., Aickelin, U., Garibaldi, J. & Kemdall, G., The Application of a Dendritic Cell Algorithm to a Robotic Classifier, ICARIS 2007, pp.204-215 (2007)

    Google Scholar 

  3. Greensmith, J., Aickelin, U. & Tedesco, G., Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm, Information Fusion, 11, pp.21-34 (2010)

    Article  Google Scholar 

  4. Fanelli, R., Further Experimentations with Hybrid Immune Inspired Network Intrusion Detection, ICARIS 2010, pp. 264-275 (2010)

    Google Scholar 

  5. Greensmith, J., Aickelin, U. & Cayer, S., Introducing dendritic Cells as a novel immune- inspired algorithm for anomaly detection, ICARIS 2005, pp. 153-167 (2005)

    Google Scholar 

  6. Greensmith, J., Aickelin, U. & Tedesco, G., Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm, Information Fusion, 11, pp.21-34 (2010)

    Article  Google Scholar 

  7. Martin-Fontecha, A., Lanzavecchia, A. & Sallusto, F., Dendritic Cell Migration to Peripheral Lymph Nodes, In: Lombardi, G. & Riffo-Vasquez (eds.) Dendritic Cells, pp.31- 49, Springer, Heidelberg (2009)

    Google Scholar 

  8. Ricart, B.G., John, G., Lee, D., Hunter, C.A. & Hammer, D.A., Dendritic Cells Distinguish Individual Chemokine Signals through CCR7 and CXCR4, J Immunol, 186, pp.53-61

    Google Scholar 

  9. Coello Coello, C. A., & Cruz Cortés, N., An Approach to Solve Multiobjective Optimization Problems Based on an Artificial Immune System., ICARIS 2002, pp. 212--221 (2002).

    Google Scholar 

  10. Freschi, R., Coello, C.A.C. & Repetto, M., Multiobjective optimization and artificial immune system: a review, retrieved at: http://www.igi-global.com/viewtitlesample.aspx?id=19637 (IGI Global), (2009).

  11. Kim, D.H., Abraham, A. & Cho, J.H., A hybid genetic algorithm and bacterial foraging approach for global optimization, Information Sciences, 177(18), pp.3918-3937 (2007).

    Article  Google Scholar 

  12. Sozzani, S., Allavena, P. &. & Mantovani, A., Dendritic cells and chemokines, In: Lotze, M.T. & Thomas, A.W. (eds.), Dendritic Cells, pp.203-211, Elseiver Academic Press, London (2001).

    Google Scholar 

  13. Sanchez-Sanches, N., Riol-Blanco, L. & Rodriguez-Fernandez, L., The multiple personalities of the chemokine receptor CCR7 in dendritic cells, J. Immunol., 176, pp.5153-5159 (2006).

    Google Scholar 

  14. Randolph, G.J., Ochando, J. & Parida-Sanchex, S., Migration of dendritic cell subsets and their precursors, Annu. Rev. Immunol., 26, pp.293-316 (2008)

    Article  Google Scholar 

  15. Hochrein, H. & O’Keeffe, M., Dendritic cell subsets and toll-like receptors, In: Bauer, S. & Hartmann, G. (eds.), Toll-like Receptors (TLRs) and Innate Immunity – Handbook of Experimental Pharmacology, pp.153-179 (2008)

    Google Scholar 

  16. Van Hasster, P.J. & Devreptes, P.N., Chemotaxis: signaling the way forward, Nature Reviews Molecular Cell Biology, 5, pp. 626-634 (2004).

    Article  Google Scholar 

  17. Shi, G.K., Harrison, K., Han, D.B., Moratz, C. & Kehrl, J.H., Toll-like receptor signaling alters the expression of regulator of G protein signaling protein in dendritic cells: implications for G protein-coupled receptor signaling, J. Immunol., 172(9), pp.5175-5144 (2004)

    Google Scholar 

  18. Blander, J. M. & Sander, L.E., Beyond pattern recognition: five immune checkpoints for scaling the microbial threat, Nature Reviews Immunology, 12, pp. 215-225 (2012).

    Article  Google Scholar 

  19. Murphy, K.M. & Stockinger, B., Effector T-cell plasticity: flexibility in the face of changing circumstances, Nature Immunology, 11(8), pp.674-680 (2010).

    Article  Google Scholar 

  20. Goodnow, C.C., Vinuesa, C.G., Randall, K.L., Mackay, F. & Brink, R., Control systems and decision making for antibody production, Nature Immunology, 11(8), pp.681-688 (2010).

    Article  Google Scholar 

  21. Pulendran, B., Tang, H. & Manicassamy, S., Programming dendritic cells to induce TH2 and tolerogenic responses, Nature Immunology, 11(8), pp.647-655 (2010).

    Article  Google Scholar 

  22. Ko, A., Lau, H.YK. & Lau, T.L., General Suppression Control Framework: Application in Self-balancing Robots, ICARIS 2005, pp.375-388 (2005)

    Google Scholar 

  23. Hart, E., Bersini, H. & Santos, F., Tolerance vs Intolerance: How Affinity Defines Topology in an Idiotpypic Network, ICARIS 2006, pp. 109-121 (2006)

    Google Scholar 

  24. Timmis, J., Neal, M. & Hunt, J., An artificial immune system for data analysis, Biosystems, 55(3), pp. 143-150 (2000)

    Article  Google Scholar 

  25. Coello Coello, C.A. & Cortés, N.C., Solving multiobjective problems using an artificial immune system, Genetic Programming Evolvable Machines, 6, pp. 163-190 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this paper

Cite this paper

Lee, N.M.Y., Lau, H.Y.K. (2012). A Cooperative Multi-objective Optimization Framework based on Dendritic Cells Migration Dynamics. In: Bramer, M., Petridis, M. (eds) Research and Development in Intelligent Systems XXIX. SGAI 2012. Springer, London. https://doi.org/10.1007/978-1-4471-4739-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4739-8_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4738-1

  • Online ISBN: 978-1-4471-4739-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics