Skip to main content

Control of Fluids and Fluid-Structure Interactions

Encyclopedia of Systems and Control
  • 396 Accesses

Some Fluid Models

We consider a fluid flow occupying a bounded domain \(\Omega _{F} \subset \) \({\mathbb{R}}^{N}\), with N = 2 or N = 3, at the initial time t = 0 and a domain \(\Omega _{F}\)(t) at time t > 0. Let us denote by ρ \((x,t) \in {\mathbb{R}}^{+}\) the density of the fluid at time t at the point \(x\ \in \Omega _{F}\)(t) and by u(x, t) ∈ \({\mathbb{R}}^{N}\) its velocity. The fluid flow equations are derived by writing the mass conservation

$$\frac{\partial \rho } {\partial t} + \mbox{ div}(\rho u) = 0\quad \mbox{ in}\;\,\Omega _{F}(t),\quad \mbox{ for}\;\,t > 0,$$
(1)

and the balance of momentum

$$\begin{array}{l} \rho \left (\frac{\partial u} {\partial t} + (u \cdot \nabla )u\right ) = \mbox{ div}\,\sigma \,\mbox{ +}\,\rho \,f\mbox{ } \\ \mbox{ in}\,\;\Omega _{F}(t),\quad \mbox{ for}\,t > \end{array}$$
(2)

where σ is the so-called constraint tensor and frepresents a volumic force. For an isothermal fluid, there is no need to complete the system by the balance of energy....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alouges F, DeSimone A, Lefebvre A (2008) Optimal strokes for low Reynolds number swimmers: an example. J Nonlinear Sci 18:277–302

    Article  MATH  MathSciNet  Google Scholar 

  • Badra M (2009) Lyapunov function and local feedback boundary stabilization of the Navier-Stokes equations. SIAM J Control Optim 48:1797–1830

    Article  MATH  MathSciNet  Google Scholar 

  • Badra M, Takahashi T (2013) Feedback stabilization of a simplified 1d fluid-particle system. An. IHP, Analyse Non Lin. http://dx.doi.org/10.1016/j.anihpc.2013.03.009

  • Barbu V, Lasiecka I, Triggiani R (2006) Tangential boundary stabilization of Navier-Stokes equations. Mem Am Math Soc 181 (852) 128

    MathSciNet  Google Scholar 

  • Boulakia M, Guerrero S (2013) Local null controllability of a fluid-solid interaction problem in dimension 3. J Eur Math Soc 15:825–856

    Article  MATH  MathSciNet  Google Scholar 

  • Chambolle A, Desjardins B, Esteban MJ, Grandmont C (2005) Existence of weak solutions for unsteady fluid-plate interaction problem. J Math Fluid Mech 7:368–404

    Article  MATH  MathSciNet  Google Scholar 

  • Coron J-M (1996) On the controllability of 2-D incompressible perfect fluids. J Math Pures Appl 75(9):155–188

    MATH  MathSciNet  Google Scholar 

  • Coron J-M (2007) Control and nonlinearity. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Ervedoza S, Glass O, Guerrero S, Puel J-P (2012) Local exact controllability for the one-dimensional compressible Navier-Stokes equation. Arch Ration Mech Anal 206:189–238

    Article  MATH  MathSciNet  Google Scholar 

  • Fabre C, Lebeau G (1996) Prolongement unique des solutions de l’équation de Stokes. Comm. P. D. E. 21:573–596

    Article  MATH  MathSciNet  Google Scholar 

  • Fernandez-Cara E, Guerrero S, Imanuvilov OYu, Puel J-P (2004) Local exact controllability of the Navier-Stokes system. J Math Pures Appl 83:1501–1542

    Article  MATH  MathSciNet  Google Scholar 

  • Fursikov AV (2004) Stabilization for the 3D Navier-Stokes system by feedback boundary control. Partial Differ Equ Appl Discret Contin Dyn Syst 10:289–314

    Article  MATH  MathSciNet  Google Scholar 

  • Fursikov AV, Imanuvilov Yu O (1996) Controllability of evolution equations. Lecture notes series, vol 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul

    MATH  Google Scholar 

  • Lequeurre J (2013) Null controllability of a fluid-structure system. SIAM J Control Optim 51:1841–1872

    Article  MATH  MathSciNet  Google Scholar 

  • Raymond J-P (2006) Feedback boundary stabilization of the two dimensional Navier-Stokes equations. SIAM J Control Optim 45:790–828

    Article  MATH  MathSciNet  Google Scholar 

  • Raymond J-P (2007) Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations. J Math Pures Appl 87:627–669

    Article  MATH  MathSciNet  Google Scholar 

  • Raymond J-P (2010) Feedback stabilization of a fluid–structure model. SIAM J Control Optim 48:5398–5443

    Article  MATH  MathSciNet  Google Scholar 

  • Raymond J-P, Thevenet L (2010) Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discret Contin Dyn Syst A 27:1159–1187

    Article  MATH  MathSciNet  Google Scholar 

  • Vazquez R, Krstic M (2008) Control of turbulent and magnetohydrodynamic channel flows: boundary stabilization and estimation. Birkhäuser, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Raymond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this entry

Cite this entry

Raymond, JP. (2013). Control of Fluids and Fluid-Structure Interactions. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Control of Fluid Flows and Fluid-Structure Models
    Published:
    21 February 2020

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_15-2

  2. Original

    Control of Fluids and Fluid-Structure Interactions
    Published:
    24 March 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_15-1