
26 April 2024

Consensus-based linear and nonlinear filtering / G. Battistelli; L. Chisci; G. Mugnai; A. Farina; A. Graziano. -
In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - STAMPA. - 60:(2015), pp. 1410-
1415. [10.1109/TAC.2014.2357135]

Original Citation:

Consensus-based linear and nonlinear filtering

Published version:
10.1109/TAC.2014.2357135

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/911148 since: 2021-03-24T18:36:26Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



1

Consensus-based linear and nonlinear filtering
G. Battistelli, L. Chisci, Senior Member, IEEE, G. Mugnai, A. Farina Fellow, IEEE and A. Graziano,

Abstract—This note addresses Distributed State Estimation (DSE)
over sensor networks. Two existing consensus approaches for DSE, i.e.
consensus on information (CI) and consensus on measurements (CM), are
combined to provide a novel class of hybrid consensus filters (named
Hybrid CMCI) which enjoy the complementary benefits of CM and CI.
Novel theoretical results, limitedly to linear systems, on the guaranteed
stability of the Hybrid CMCI filters under collective observability and
network connectivity are proved. Finally, the effectiveness of the proposed
class of consensus filters is evaluated on a target tracking case-study with
both linear and nonlinear sensors.

Index Terms—Distributed state estimation; sensor networks; consen-
sus; nonlinear filtering.

I. INTRODUCTION

Advances in wireless sensor networks are making multi-agent
(distributed) architectures ubiquitous in modern monitoring and con-
trol systems. This technological breakthrough, however, needs to
be supported by theoretical research work finalized to redesign
distributed estimation and control algorithms that preserve as much
as possible the stability, performance and robustness requirements
of their centralized counterparts. The present note specifically deals
with Distributed State Estimation (DSE) over a sensor network with
no fusion centre, by exploiting the consensus approach [1]. This
topic has recently gathered a lot of attention in the context of
both parameter and state estimation. For what concerns parameter
estimation, consensus-based techniques with guaranteed performance
can be found for example in [2], [3].

As for state estimation, several consensus-based approaches have
been proposed in the literature both in linear and nonlinear settings.
A first family of techniques, hereafter referred to as Consensus on
Estimates (CE), is based on the idea of spreading the available
information over the network by performing, at each time instant,
a consensus averaging of the local state estimates/predictions [4]-
[11]. The choice of averaging out only the state estimates serves the
purpose of keeping the information exchange between neighboring
nodes as limited as possible. However, since also the covariance
matrices contain valuable information which can be used to improve
performance, other, more elaborated approaches have been proposed.
For instance, in [12]-[14], it is proposed to perform a consensus
among the local measurements and innovation covariances so as
to approximate, in a distributed way, the correction step of the
centralized Kalman filter. This approach is referred to in this note
as Consensus on Measurements (CM). A different point of view
has been adopted in [15], giving rise to the so-called Consensus
on Information (CI) approach. From an algorithmic viewpoint, in
the linear case CI is nothing but consensus applied to the inverse
covariance (information) matrix and to the information vector. From
an information-theoretic viewpoint, CI can be interpreted as consen-
sus on probability density functions in the Kullback-Leibler average
sense.

G. Battistelli, L. Chisci and G. Mugnai are with Dipartimento di Ingeg-
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The approach presented in this note moves from the observation
that CM and CI exhibit complementary features. Specifically, CI
guarantees stability for any number of consensus steps (even a single
one [15]), but its mean-square estimation error performance can be
hampered by the fact that the fusion rule adopts a conservative point
of view by assuming the correlation between the estimates coming
from different nodes to be completely unknown. On the other hand,
CM avoids any conservative assumption on the correlation by fusing
only the novel information, but it does not guarantee stability unless
the number of consensus steps is sufficiently high. Clearly, this can be
problematic whenever, for reduced communication cost and improved
energy efficiency, only few consensus steps can be performed in each
sampling interval. In this context, a novel family of DSE algorithms,
named Hybrid CMCI (HCMCI), is proposed wherein CM and CI are
combined so as to retain the positive features of both approaches.
Different choices for the combination weights are discussed, leading
to different properties. Following [16], where preliminary results on
the subject can be found, the nonlinear case is treated by resorting to
the Extended Kalman Filter (EKF) paradigm. The main contribution
of this note is a stability analysis of the proposed family of HCMCI
filters in the case of linear systems. In order to substantiate the
analysis, a performance evaluation of the considered consensus-based
filters on a target tracking simulation case-study with both linear and
nonlinear sensors is presented. As a final remark, it is pointed out
that, for a particular choice of the combination weights, the proposed
algorithm is equivalent to the Information Consensus Filter (ICF),
derived independently from our work and originally presented in [17],
whose stability was observed experimentally in [18].

II. PROBLEM FORMULATION

This note addresses DSE over a sensor network consisting of
two types of nodes: communication nodes have only processing
and communication capabilities, i.e. they can process local data as
well as exchange data with neighboring nodes, while sensor nodes
have also sensing capabilities, i.e. they can sense data from the
environment. Notice that communication nodes are introduced to
act as “relays” of information among distant sensor nodes, in order
to guarantee network connectivity while keeping the transmission
power (and hence the communication range) of each sensor node
at a moderate intensity, hence prolonging network lifetime. In the
sequel, the network will be denoted by the triplet (S, C,A) where:
S is the set of sensor nodes, C the set of communication nodes,
N = S

⋃
C, A ⊆ N ×N is the set of arcs (connections) such that

(i, j) ∈ A if node j can receive data from node i (clearly (i, i) ∈ A
for all i ∈ N ). Further, for each node i ∈ N , N i will denote the set
of its in-neighbors (including i itself), i.e. N i 4= {j : (j, i) ∈ A}.

The DSE problem over the sensor network (S, C,A) can be
formulated as follows. Consider a dynamical system

xt+1 = ft(xt) + wt (1)

and a set of sensors S with measurement equations

yit = hit(xt) + vit , i ∈ S . (2)

It is assumed that wt,v
1
t ,v

2
t , . . . are mutually uncorrelated zero-

mean white noises with covariances Qt = E
[
wtw

T
t

]
> 0 and
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TABLE I: Information C(E)KF Algorithm, to be implemented at
each sampling interval t = 1, 2, . . . starting from initial conditions
x̂1|0, Ω1|0, q1|0 = Ω1|0 x̂1|0.

Correction (measurement-update):

Ci
t =

∂hit
∂xt

(
x̂t|t−1

)
, i ∈ S

Ωt|t = Ωt|t−1 +
∑
i∈S

(
Ci
t

)T
Vi
t Ci

t

yit = yit − hit
(
x̂t|t−1

)
+ Ci

tx̂t|t−1, i ∈ S
qt|t = qt|t−1 +

∑
i∈S

(
Ci
t

)T
Vi
t yit

Prediction (time-update):
x̂t|t = Ω−1

t|t qt|t, and At =
∂ft

∂xt

(
x̂t|t

)
Ωt+1|t = Wt −WtAt

(
Ωt|t + AT

t WtAt
)−1

AT
t Wt

x̂t+1|t = ft
(
x̂t|t

)
, and qt+1|t = Ωt+1|t x̂t+1|t

Ri
t = E

[
vit
(
vit
)T ]

> 0. Then the objective is to have, at each time
t ∈ {1, 2, . . . } and in each node i ∈ N , an estimate x̂t|t of the state
xt constructed only on the basis of the local measurements (when
available) and of data received from all adjacent nodes j ∈ N i\{i}.

Centralized (Extended) Kalman Filter

A testbed for the performance of any DSE algorithm is the central-
ized (Extended) Kalman Filter, denoted as C(E)KF, which is assumed
to simultaneously process all measurements {yik, i ∈ S}. Hereafter,
for convenience, the information filter form will be adopted. The
information filter propagates, instead of the estimate x̂t|t−1 and
covariance Pt|t−1, the information (inverse covariance) matrices

Ωt|t−1
4
= P−1

t|t−1, Ωt|t
4
= P−1

t|t

and the information vectors

qt|t−1
4
= P−1

t|t−1x̂t|t−1, qt|t
4
= P−1

t|t x̂t|t .

Introducing the noise information matrices Wt
4
= Q−1

t and Vi
t
4
=(

Ri
t

)−1 and supposing the functions ft(·) and hit(·) to be continu-
ously differentiable for any t and any i ∈ S, the recursive information
filter of Table I can be derived.

Notice that the algorithm of Table I generalizes the Informa-
tion Kalman Filter algorithm, corresponding to ft(x) = Atx and
hit(x) = Ci

tx, to nonlinear systems (1) and/or sensors (2) via
the Extended Kalman Filter paradigm of linearizing the state and
measurement equations around the current estimate.

III. DISTRIBUTED STATE ESTIMATION ALGORITHMS

A. Consensus on Information and Consensus on Measurements

The covariance intersection fusion rule [19] suggests a possible
consensus approach to DSE, namely consensus on the information
(matrix-vector) pair. Let us assume that, at time t, each node i ∈ N
be provided with a local information pair

(
Ωi
t|t−1,q

i
t|t−1

)
. Then the

Consensus on Information (CI) approach to DSE is summarized by
the algorithm of Table II to be carried out at each sampling interval
t ≥ 1 in each node i ∈ N . Notice that, in each consensus iteration,
each node i computes a regional average, that is a combination of
the values in N i with suitable consensus weights πi,j , j ∈ N i. In
this note, a convex combination is adopted by supposing πi,j ≥ 0
and

∑
j∈N iπ

i,j = 1, ∀i ∈ N .
It is worth to point out that the CI algorithm of Table II reduces

to the well known covariance intersection [19] for a single (L = 1)
consensus step. It represents, therefore, a generalization of covariance

TABLE II: Consensus on Information (CI) Algorithm

Correction:
if i ∈ S then

Ci
t =

∂hit
∂xt

(
x̂i
t|t−1

)
Ωi
t(0) = Ωi

t|t−1
+
(
Ci
t

)T
Vi
t Ci

t

sample the measurement yit
yit = yit − hit

(
x̂i
t|t−1

)
+ Ci

tx̂
i
t|t−1

qit(0) = qi
t|t−1

+
(
Ci
t

)T
Vi
t yit

end if
if i ∈ C then

Ωi
t(0) = Ωi

t|t−1
, and qit(0) = qi

t|t−1
end if
Consensus:
for ` = 0, 1, . . . , L− 1 do

Fuse the quantities qjt (`) and Ωj
t (`) according to

qit(`+ 1) =
∑
j∈N i

πi,j qjt (`)

Ωi
t(`+ 1) =

∑
j∈N i

πi,j Ωj
t (`)

end for
x̂i
t|t =

[
Ωi
t(L)

]−1
qit(L), Ωi

t|t = Ωi
t(L)

Prediction:

x̂i
t+1|t = ft

(
x̂i
t|t

)
, and At =

∂ft

∂xt

(
x̂i
t|t

)
Ωi
t+1|t = Wt −WtAt

(
Ωi
t|t + AT

t WtAt

)−1
AT
t Wt

qi
t+1|t = Ωi

t+1|tx̂
i
t+1|t

intersection to multiple (L > 1) consensus steps which can be
introduced in order to improve performance. Notice that L linearly
increases both computation and communication burdens; hence it
should be selected as a suitable tradeoff between cost and perfor-
mance.

As an alternative approach, in [12], [13] it has been proposed to ex-
ploit consensus in order to compute in a distributed way the quantities
∂Ωt

4
=
∑
i∈S

(
Ci
t

)T
Vi
tC

i
t and ∂qt

4
=
∑
i∈S

(
Ci
t

)T
Vi
ty
i
t for

distributed linear Kalman filtering. As shown in [16], this approach,
that will be referred to as consensus on measurements (CM), can be
extended to nonlinear systems by following the EKF paradigm. To
this end, the information filter of Table I can be exploited, with the
only difference that the virtual measurements yjt has to be redefined
in terms of the local state predictions x̂jt|t−1 instead of the centralized
one x̂t|t−1 (which is not available in a distributed setting). The
interest reader is referred to [16] for a detailed derivation.

Notice that consensus provides, at convergence, the averages
∂Ωt/|N | and ∂qt/|N |, |N | denoting cardinality of N , while
the information filter update actually requires ∂Ωt and ∂qt. This
drawback can be partially remedied by multiplying the consensus
outcome by some suitable scalar weight ωit. Possible choices for the
weights ωit will be discussed in the next section. Summing up, the
consensus-based DSE algorithm of Table III is obtained.

B. Hybrid Consensus

Consensus on measurements and consensus on information have
complementary positive and negative features. To see this, let us
denote by Π the consensus matrix, whose elements are the consensus
weights πi,j , i, j ∈ N . Further, let πi,j` be the (i, j)-th element
of Π`, i.e. the `-th power of the consensus matrix Π. Then, the
correction step for the considered algorithms can be rewritten as in
Table IV. Notice that, for the terms δqit and δΩi

t, the summations
are extended only to sensor nodes since, for all comunication nodes,
one has δqjt = 0 and δΩj

t = 0.
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TABLE III: Consensus on Measurements (CM) Algorithm

Compute the local correction terms:
if i ∈ S then

sample the measurement yit

Ci
t =

∂hit
∂x

(
x̂i
t|t−1

)
yit = yit − hit

(
x̂i
t|t−1

)
+ Ci

tx̂
i
t|t−1

δqit =
(
Ci
t

)T
Vi
t yit

δΩi
t =

(
Ci
t

)T
Vi
t Ci

t
else

δqit = 0, and δΩi
t = 0

end if
Consensus:
δqit(0) = δqit, and δΩi

t(0) = δΩi
t

for ` = 0, 1, . . . , L− 1 do
Fuse the quantities δqjt (`) and δΩj

t (`) according to:
δqit(`+ 1) =

∑
j∈N i

πi,j δqjt (`)

δΩi
t(`+ 1) =

∑
j∈N i

πi,j δΩj
t (`)

end for
Correction:
qi
t|t = qi

t|t−1
+ ωit δq

i
t(L)

Ωi
t|t = Ωi

t|t−1
+ ωitδΩ

i
t(L)

x̂i
t|t =

(
Ωi
t|t

)−1
qi
t|t

Prediction: as in table II

TABLE IV: Expression of the information vector and matrix in the
correction step after consensus for the considered algorithms

qi
t|t Ωi

t|t

CI
∑
j∈N

πi,jL qj
t|t−1

∑
j∈N

πi,jL Ωj
t|t−1

+
∑
j∈S

πi,jL δqjt +
∑
j∈S

πi,jL δΩj
t

CM qi
t|t−1

+ ωit
∑
j∈S

πi,jL δqjt Ωi
t|t−1

+ ωit
∑
j∈S

πi,jL δΩj
t

HCMCI
∑
j∈N

πi,jL qj
t|t−1

∑
j∈N

πi,jL Ωj
t|t−1

+ ωit
∑
j∈S

πi,jL δqjt + ωit
∑
j∈S

πi,jL δΩj
t

As it can be seen from Table IV, in CI a convex combination of the
local priors is computed. As shown in [15], this is important in order
to ensure boundedness of the estimation error for any number (even a
single one) of consensus steps. On the contrary, in CM no consensus
on the local priors is performed since only the novel information,
i.e. δqjt and δΩj

t , is combined. Hence, the stability of this family
of distributed filters depends in a crucial way on the number L of
consensus steps per sampling interval. To see this, let N i(L) be the
set of nodes from which node i can be reached in L hops. Then, since
πi,jL can be different from 0 only if j ∈ N i(L), it is immediate to
see that CM can provide a bounded estimation error on a given node
i only if observability (or at least detectability) from the set of nodes
N i(L) holds. In general, this becomes true only for a sufficiently
large number of consensus steps (see, for instance, the example of
Section V).

On the other hand, in CI the novel information is unavoidably
underweighted, whereas in CM the multiplication by the scalar
weights ωit can, at least partially, remedy this drawback, thus leading
to enhanced performance as the number of consensus steps increases.
In order to combine the benefits and neutralize the drawbacks of both
CI and CM, the two approaches can be combined so as to give rise
to a hybrid consensus approach, hereafter called HCMCI (Hybrid

TABLE V: Hybrid CMCI (HCMCI) Algorithm

Compute the local correction terms
if i ∈ S then

sample the measurement yit
δqit =

(
Ci
t

)T
Vi
t yit

δΩi
t =

(
Ci
t

)T
Vi
t Ci.

else
δqit = 0, and δΩi

t = 0
end if
Consensus:
δqit(0) = δqit, δΩi

t(0) = δΩi
t,

qit(0) = qi
t|t−1

, Ωi
t(0) = Ωi

t|t−1
,

for ` = 0, 1, . . . , L− 1 do
Fuse the quantities δqjt (`) and δΩj

t (`) as in Table III
and in parallel fuse the quantities qjt (`) and Ωj

t (`) as in Table II
end for
Correction:
qi
t|t = qi

t|t−1
(L) + ωit δq

i
t(L)

Ωi
t|t = Ωi

t|t−1
(L) + ωit δΩ

i
t(L)

x̂i
t|t =

(
Ωi
t|t

)−1
qi
t|t

Prediction: as in table II

Consensus on Measurements - Consensus on Information). HCMCI
actually carries out in parallel, at each consensus step, the two types
of consensus CI and CM described above. The resulting algorithm is
detailed in Table V.

Notice that, actually, Table V provides a family of distributed filters
corresponding to different choices of the scalar weigths ωit. With this
respect, a reasonable choice consists in setting ωit = |N |. In fact,
when the consensus weights are chosen so that πi,jL → 1/|N | as
L→∞, such a choice has the appealing feature of giving rise to a
distributed algorithm converging to the centralized (E)KF as L tends
to infinity. Notice that, when such a choice is adopted, the resulting
algorithm is equivalent to the ICF proposed in [18] in a linear setting.
Notice also that, in this case, it is possible to perform jointly the two
parallel consensus algorithms of Table V so as to save bandwidth
[18] (this is true whenever the weights ωit are node-independent).

While asymptotically optimal, the choice ωit = |N | may have some
drawbacks when only a finite, possibly small, number of consensus
steps is performed. In fact, a multiplication by |N | could actually lead
in some nodes to an overestimation of ∂Ωt, a situation that one might
want to avoid in order to preserve the consistency of each local filter1.
An alternative solution is to exploit consensus so as to compute, in
a distributed way, a normalization factor able to improve the filter
performance while preserving consistency of each local filter. For
example, an estimate of the fraction |S|/|N | of sensor nodes in the
network can be computed via the consensus algorithm

bit(`+ 1) =
∑
j∈N i

πi,j bjt(`), for ` = 0, 1, . . . , L− 1 (3)

with the initialization bit(0) = 1 if i ∈ S, and bit(0) = 0 otherwise.
Then, it can be seen that the choice

ωit =

{
1/bit(L) if bit(L) 6= 0
1 otherwise

(4)

has the desirable property of preserving the consistency of each
local filter. This can be seen by looking at the last row of Table
IV and noting that the novel information is never overweighted. In
fact, the terms δqjt and δΩj

t , for i ∈ S, are multiplied by a weight

1Recall that a filter is said to be consistent when its estimated error
covariance is an upper bound (in the positive definite sense) of the true error
covariance [19].



4

ωitπ
i,j
L = πi,jL /bit(L) which is guaranteed not to exceed 1 since, by

construction, bit(L) =
∑
j∈S π

i,j
L .

IV. STABILITY ANALYSIS

In this section, the stability properties of the proposed DSE
algorithm are analyzed in a linear time-invariant setting. To this end,
it is supposed that the system dynamics and measurement equations
take the form

xt+1 = Axt + wt (5)

yit = Cixt + vit if i ∈ S (6)

Further, the process and measurement noise covariances are supposed
to be time-invariant as well, i.e., Qt = Q > 0 and Ri

t = Ri > 0 for
any t and any i. The following preliminary assumptions are needed.

A1. The system matrix A is invertible.
A2. The system is collectively observable, i.e. the pair (A,C) is

observable where C := col
(
Ci; i ∈ S

)
.

A3. The consensus matrix Π is row stochastic and primitive 2.
A4. There exist two positive scalars ω and ω̄ such that 0 < ω ≤

ωit ≤ ω̄, for any i ∈ N and t ≥ 0.
Notice that assumption A1 is automatically satisfied in sampled-

data systems wherein the matrix A is obtained by discretization of a
continuous-time system matrix. As for assumption A2, the collective
observability requirement can be relaxed to collective detectability by
resorting to an observability decomposition in each network node as
discussed in [15]. Assumption A3 is strictly related to the network
connectivity. In fact, it can be satisfied if and only if the network is
strongly connected (i.e., any node is reachable from any other node
through a directed path). For instance, in this case, the Metropolis
weights [2], [3] satisfy A3. While taking the consensus matrix Π
row stochastic is sufficient for stability, a doubly stochastic Π would
also ensure that all the elements of ΠL tends to 1/|N | as L→ +∞.
Finally, notice that both the choices suggested in the previous section
for the weights ωit satisfy assumption A4.

We now state the main stability result of this note which will be
proved step by step in the remaining of this section.

Theorem 1: Let assumptions A1-A4 hold. Further, let the HCMCI
algorithm be adopted and let L ≥ 1. Finally, suppose that, for every
i ∈ N , the a priori information matrix Ωi

1|0 is positive definite. Then,
the estimation error eit = xt − x̂it|t−1 is asymptotically bounded in

mean square, i.e., lim sup
t→∞

E
{
‖eit‖2

}
< +∞ , for any i ∈ N . �

In order to derive the above stability result, a first important step
is the study of the properties of the information matrices Ωi

t|t.

Lemma 1: Let the same assumptions as in Theorem 1 hold. Then,
there exist positive definite matrices Ω, Ω, Ω+, and Ω

+
such that

0 < Ω ≤ Ωi
t|t ≤ Ω and 0 < Ω+ ≤ Ωi

t+1|t ≤ Ω
+

for any i ∈ N
and t ≥ 1.
Proof: Let us first focus on the matrices Ωi

t|t. By recalling the identity
in the last row of Table IV and the fact that δΩj

t =
(
Cj
)T

Vj Cj ,
it can be seen that assumption A4 implies that

Ωi
t|t ≤

∑
j∈N

πi,jL Ωi
t|t−1 +

∑
j∈S

πi,jL ω̄
(
Cj
)T

Vj Cj , (7)

Ωi
t|t ≥

∑
j∈N

πi,jL Ωi
t|t−1 +

∑
j∈S

πi,jL ω
(
Cj
)T

Vi Cj . (8)

2Recall that a non-negative square matrix Π is row stochastic if all its rows
sum up to 1. Further, it is primitive if there exists an integer m such that all
the elements of Πm are strictly positive.

Suppose now that a CI algorithm is carried out with the noise
covariance matrices Rj replaced by Rj/ω̄ and let Ω

i
t|t and Ω

i
t|t−1

be the resulting information matrices. Similarly, let Ωi
t|t and Ωi

t|t−1

denote the information matrices resulting from a CI algorithm with
the matrices Rj replaced by Rj/ω. Recalling the first row of Table
IV, it can be readily seen that

Ω
i
t|t =

∑
j∈N

πi,jL Ω
i
t|t−1 +

∑
j∈S

πi,jL ω̄
(
Cj
)T

Vj Cj , (9)

Ωi
t|t =

∑
j∈N

πi,jL Ωi
t|t−1 +

∑
j∈S

πi,jL ω
(
Cj
)T

Vi Cj . (10)

Hence, provided that the same initializations are adopted for all the
algorithms, i.e. Ω

i
1|0 = Ωi

1|0 = Ωi
1|0, one can see by means of

simple induction arguments that Ωi
t|t ≤ Ωi

t|t ≤ Ω
i
t|t for any i ∈ N

and t ≥ 1 (recall also that the prediction step of the Kalman filter
recursion is monotone nondecreasing in the sense that Ωi

t|t ≤ Ωi
t|t ≤

Ω
i
t|t implies Ωi

t+1|t ≤ Ωi
t+1|t ≤ Ω

i
t+1|t). Then, the first part of the

proof is concluded by noting that, under assumptions A1-A3, there
exist two positive definite matrices Ω and Ω such that Ωi

t|t ≥ Ω and
Ω
i
t|t ≤ Ω (by virtue of Theorem 2 of [15] and the fact that Ωi

1|0 > 0).
As for the bounds on Ωi

t+1|t, one can simply take Ω
+

= W and
Ω+ =

(
AΩ−1AT + Q

)−1
. �

Lemma 1 ensures that the matrices Ωi
t|t are non-singular and,

hence, that the estimation errors eit are well defined. As it can be
seen from the proof, this property crucially depends on network con-
nectivity (assumption A3) and collective observability (assumption
A2). The following result can now be stated.

Proposition 1: Let the same assumptions as in Theorem 1 hold.
Then the estimation errors eit obey the recursion

eit+1 =
∑
j∈N

Φi,j
t ejt +

∑
j∈N

Γi,jt vjt + wt (11)

for any i ∈ N , where Φi,j
t = πi,jL A

(
Ωi
t|t
)−1

Ωj
t|t−1 and Γi,jt =

πi,jL ωit,A
(
Ωi
t|t
)−1

Vj
t .

Proof: Notice first that eit+1 = A(xt − x̂it|t) + wt.
Further, the estimate x̂it|t can be expressed as x̂it|t =(
Ωi
t|t
)−1

[∑
j∈Nπ

i,j
L Ωi

t|t−1x̂
j
t|t−1 + ωit

∑
j∈Sπ

i,j
L

(
Cj
)T

Vj yjt

]
with yjt = Cjxt + vjt (recall again the last row of Table
IV). Then, equation (11) can be derived with straightforward
calculations by recalling the expression for Ωi

t|t in the
last row of Table IV and noting that the identity xt =(
Ωi
t|t
)−1

[∑
j∈Nπ

i,j
L Ωi

t|t−1xt + ωit
∑
j∈Sπ

i,j
L

(
Cj
)T

VjCjxt
]

holds . �

Consider now the noise-free collective dynamics of the estimation
errors

et+1 = Φtet (12)

where et = col
(
eit, i ∈ N

)
and Φt is a block matrix whose block

elements are given by the matrices Φi,j
t defined in Proposition 1.

Then, the following result holds.

Lemma 2: Let the same assumptions as in Theorem 1 hold. Then
the time-varying system (12) is uniformly exponentially stable.
Proof: Let p be the Perron-Frobenius left eigenvector of the matrix
ΠL. Notice that, by virtue of Assumption A3, such an eigenvector
has strictly positive components pi, i ∈ N , and satisfies the equation
pTΠL = pT , i.e.,

∑
j∈N p

jπj,iL = pi. Consider now the candidate
Lyapunov function

Vt(et) =
∑
i∈N

pi
(
eit

)T
Ωi
t|t−1e

i
t
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for system (12). In view of Lemma 1, it is immediate to see that
there exist suitable strictly positive constants α1 and α2 such that
α1‖et‖2 ≤ Vt(et) ≤ α2‖et‖2. Moreover, exploiting the fact that
Ωi
t+1|t ≤ β̃A−TΩi

t|tA
−1 for some positive real β̃ < 1 (see point

iii) in Lemma 1 of [15]), it turns out that(
eit+1

)T
Ωi
t+1|te

i
t+1 =

(∑
j∈N

Φi,j
t ejt

)T
Ωi
t+1|t

∑
j∈N

Φi,j
t ejt

≤ β̃

(∑
j∈N

πi,jL Ωj
t|t−1e

j
t

)T (
Ωi
t|t

)−1 ∑
j∈N

πi,jL Ωj
t|t−1e

j
t

≤ β̃
∑
j∈N

πi,jL

(
ejt

)T
Ωj
t|t−1e

j
t

where the latter inequality follows from the fact that Ωi
t|t ≥∑

j∈N π
i,j
L Ωj

t|t−1 and from Lemma 2 of [15]. As a consequence,
it is possible to write

Vt+1(et+1) =
∑
i∈N

pi
(
eit+1

)T
Ωi
t+1|te

i
t+1

≤ β̃
∑
i,j∈N

piπi,jL

(
ejt

)T
Ωj
t|t−1e

j
t

= β̃
∑
j∈N

pj
(
ejt

)T
Ωj
t|t−1e

j
t = β̃ Vt(et)

from which uniform exponential stability of (12) follows at once. �

Hence, the statement of Theorem 1 readily follows from Lemma
2 above and the fact that the terms

∑
j∈N Γi,jt vjt + wt in (11) are

bounded in mean square by virtue of Lemma 1.
Remark 1: Notice that the agreement on the matrices Ωi plays

a fundamental role in the Lyapunov stability analysis, in that such
matrices are directly associated with the possibility of defining the
candidate Lyapunov function used in the proof of Theorem 1. Hence
their presence is important even if, in general, a direct interpretation
of such matrices as inverse covariances is not possible.

V. SIMULATION EXAMPLES

The aim of this section is to investigate how different types of
consensus-based distributed state estimators compare with each other
and with the centralized state estimator. To this end, a single-target
tracking case study will be considered, where the target motion is
modelled by a linear (nearly constant velocity) model (see [15]) where
xt = [xt, ẋt, yt, ẏt]

T is the kinematic target state at sampling time
t made up of the Cartesian coordinates of position (xt, yt) and of
velocity (ẋt, ẏt); the sampling interval has been fixed to 1 s and the
variance of the random fluctuations of target speed to 0.25 m2/s3.
Two different simulation scenarios corresponding to two different
sensor networks will be considered.

In the first scenario, the network is composed of 100 communi-
cation nodes and 5 linear position sensor nodes characterized by the
measurement equation (6) with

Ci =

[
1 0 0 0
0 0 1 0

]
, ∀i ∈ S .

Conversely, in the second scenario two types of nonlinear position
sensors measuring angle or, respectively, distance have been consid-
ered. These two sensors, from now on indicated by the acronyms
DOA (Direction Of Arrival) and TOA (Time Of Arrival), are char-
acterized by the following measurement functions:

hi(x) =


atan2

(
x− xi, y − yi

)
, if i is a DOA sensor√

(x− xi)2 + (y − yi)2, if i is a TOA sensor

TABLE VI: Percentage performance degradation

HCMCI-1 HCMCI-2
Pd PL 1 2 3 4 1 2 3 4
0.9 0 5.5 5.5 4.9 3.5 5.8 5.9 5.6 5.4
1 0.2 7.7 2.5 1.6 1.7 4.5 1.5 1.2 1.1

0.9 0.2 12 6.6 6 4.6 9.8 6.7 6.1 5.8

where atan2 is the 4-quadrant inverse tangent function and (xi, yi)
denotes the position of the i-th sensor. Overall, the network consists
of 100 communication nodes, 5 TOA sensor nodes, and 5 DOA
sensor nodes. Graphical representations of the two sensor networks
are provided in Fig. 1. The measurement noise will be assumed
to have σx = σy = 10 m standard deviation for linear sensors,
σθ = 2◦ standard deviation for DOA sensors, and σr = 10 m
standard deviation for TOA sensors. Finally, the consensus weights
used in the simulations have been set equal to the Metropolis weights.

In each of the considered simulation settings 200 independent
Monte Carlo trials have been performed and the position root mean
square error (PRMSE), averaged over time and over all the network
nodes, has been computed as performance index. Fig 2 shows the
comparison between the following state estimators: C(E)KF, CM
with weights ωit as in (4), CI, HCMCI with weights ωit as in (4)
(denoted hereafter as HCMCI-1), HCMCI with weights ωit = |N |
(denoted hereafter as HCMCI-2). Notice that the minimum numbers
of consensus steps for which the CM algorithm exhibits a stable
behavior for the two networks are L = 4 and L = 5, respectively.
Accordingly the PRMSEs of the CM for lower values of L are
omitted in the plots since out of scale. The simulation results
confirm the theoretical analysis by showing that HCMCI, for both the
considered weight choices, ensures stability already for L = 1 and
outperforms CI thanks to the presence of the scalars ωit weighting the
novel information. Further, by comparing the PRMSEs of HCMCI-
1 and HCMCI-2, it can be seen that, at least in the considered
set-up, the choice ωit = |N |, which is asymptotically optimal as
L → +∞, is not necessarily the best one when only a limited
number of consensus steps per iteration can be performed. Of course,
different choices of the weights ωit can be convenient depending on
the particular setup.

Additional simulations have been carried out by considering for
each sensor node a probability Pd of missed measurement and for
each network link a probability PL of data loss. Table VI reports the
percentage performance degradation of HCMCI-1 and HCMCI-2 (for
different values of L) relative to the ideal case Pd = 1 and PL = 0.
It can be seen that missed measurements and data dropouts affect in a
similar way the two filters and, as expected, the largest performance
degradation occurs for L = 1.

VI. CONCLUDING REMARKS

While the stability analysis carried out in this note pertains only
to the LTI case, it turns out that it could be used as a starting point
for studying the stability of the estimation error dynamics also in a
nonlinear setting. In fact, under suitable continuity assumptions it is
possible to write the estimation error dynamics in a suitable way so
that the linearized part is separated from the nonlinear (higher-order)
terms Then, an analysis similar to the one of Section IV could be
carried out to prove stability of the linearized part of the estimation
error dynamics, which in turn is the key for achieving a local stability
result for the overall dynamics. Results in this direction can be found
in [20] to which the interested reader is referred.
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Fig. 1: Linear (top) and nonlinear (bottom) sensor networks used in
the simulations.
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