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Preface

Although this book is focused on the process industries, the methodologies
discussed in the following chapters are generic and can in many instances be
applied with little modification in other monitoring systems, including some of
those concerned with structural health monitoring, biomedicine, environmental
monitoring, the monitoring systems found in vehicles and aircraft and monitoring
of computer security systems. Of course, the emphasis would differ in these other
areas of interest, e.g. dynamic process monitoring and nonlinear signal processing
would be more relevant to structural health analysis and brain—-machine interfaces
than techniques designed for steady-state systems, but the basic ideas remain intact.
As a consequence, the book should also be of interest to readers outside the process
engineering community, and indeed, advances in one area are often driven by
application or modification of related ideas in a similar field.

In a sense, the area of process monitoring and the detection and analysis of
change in technical systems are an integral part of the information revolution,
as the use of data-driven methods to construct the requisite process or systems
models becomes dominant over first-principle or higher knowledge approaches.
This revolution has changed the world as we know it and will continue to do so
in as yet unforeseen ways.

Rightly or wrongly, there is a perception that the mining engineering environment
is conservative as far as research spending is concerned, reluctant to embrace future
technologies that do not have an immediate proven impact on the bottom line, also
as far as process automation is concerned. However, this is rapidly changing, with
large mining companies investing considerable sums of money in the development
of advanced process automation systems with no immediate benefit. These new
automation systems will have to sense changes in their environment and be able
to react to these changes, consistently, safely and economically. Apart from the
development of advanced sensors, process monitoring technologies would play a
central role in the success of these automated mining systems. For example, in
underground mining, these systems would have to be able to differentiate between
mineral and the surrounding gangue material in real time or be able to differentiate
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between solid rock and rock that might be on the verge of collapse in a mining
tunnel. Humans have mixed success in these tasks, and current automation systems
are too rudimentary to improve on this.

These new diagnostic systems would have to cope with the so-called Big Data
phenomenon, which will inevitably also have an impact on the development and
implementation of the analytical techniques underpinning them. In many ways, Big
Data can simply be seen as more of the same, but it would be unwise to see it simply
as a matter that can be resolved by using better hardware. With large complex data
sets, the issues of automatically dealing with unstructured data, which may contain
comparatively little useful information, become paramount. In addition, these data
streams are likely to bring with them new information not presently available, in
ways that are as yet unforeseen. Just like video data can simply be seen as a series of
images, if taken at a sufficiently high frequency, these data can reveal information
on the dynamic behaviour of the system that a discontinuous series of snapshots
cannot. It is easy to see that in some cases this could make a profound difference on
our understanding of the behaviour of the system.

In the same way that Big Data can be seen as data, just more of it, machine
learning can arguably be seen as statistics, simply in a different guise, as in many
ways it is without a doubt. However, looking into the future, as systems rapidly
grow in complexity, the ability of machines to truly learn could also be influenced
in unforeseen ways. By analogy, one could consider a novice chess player, who has
learnt the rules of chess and knows how to detect direct threats to his individual
pieces on the board. However, it is only by experience that he learns to recognize
the unfolding of more complex patterns or emergent behaviour that would require
timely action to avoid or exploit.

Perth, WA, Australia Chris Aldrich
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ACF Autocorrelation function

ADALINE Adaptive linear element

AHPCA Adaptive hierarchical principal component analysis
AID Automatic interaction detection

AKM Average kernel matrix

AMI Average mutual information

AR Autoregressive

ARL Alarm run length

ARMA Autoregressive moving average

ARMAX Autoregressive moving average with exogenous variables
AUC Area under curve

BDKPCA  Batch dynamic kernel principal component analysis
BDPCA Batch dynamic principal component analysis

BZ Belousov—Zhabotinsky

CART Classification and regression trees

CHAID Chi-square automatic interaction detection

COW Correlation optimized time warping

CSTR Continuous stirred tank reactor

CUSUM Cumulative sum

CVA Canonical variate analysis

DD Detection delay

DICA Dynamic independent component analysis
DISSIM Dissimilarity

DKPCA Dynamic kernel principal component analysis
DPCA Dynamic principal component analysis

DTW Dynamic time warping
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EEMD Ensemble empirical mode decomposition

ELM Extreme learning machine

EMD Empirical mode decomposition

EWMA Exponentially weighted moving average

FAR False alarm rate

FS Feature samples

ICA Independent component analysis

INLPCA Inverse nonlinear principal component analysis
IOHMM Input—output hidden Markov model

JITL Just-in-time learning

k-DISSIM Kernel dissimilarity

KICA Kernel independent component analysis
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KPCA Kernel principal component analysis
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MHMT Multi-hidden Markov tree

MICA Multiway independent component analysis
MKICA Multiscale kernel independent component analysis
MPCA Multiway principal component analysis

MPLS Multiway partial least squares

MSDPCA Multiscale dynamic principal component analysis
MSE Mean square error

MSKPCA Multiscale kernel principal component analysis
MSPC Multivariate statistical process control
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MSSPCA Multiscale statistical process control
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NLPCA Nonlinear principal component analysis

NN Neural network

NOC Normal operating conditions

OOB Out of bag

PAC Probably approximately correct

PCA Principal component analysis

PDPCA Partial dynamic principal component analysis
PLS Partial least squares

RBM Restricted Boltzmann machine

RF Random forest

ROC Receiver operating curve

RQA Recurrence quantification analysis

SBKM Single batch kernel matrix

SI Subspace identification

SOM Self-organizing map

SPC Statistical process control

SPE Squared prediction error

SPM Statistical process monitoring

SSA Singular spectrum analysis
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SVDD Support vector domain description

SVM Support vector machine (1-SVM one class SVM)
SVR Support vector regression

TAR True alarm rate
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TLPP Tensor locality preserving projection

UCL Upper control limit

VARMA  Vector autoregressive moving average
vC Vapnik—Chervonenkis
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