Skip to main content

Hard-Wired and Plastic Mechanisms in 3-D Shape Perception

  • Chapter
Shape Perception in Human and Computer Vision

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Texture patterns on surfaces provide powerful cues to the three-dimensional shapes of objects. The perceived shapes, however, can be veridical or distorted depending on the texture pattern. By resolving retinal images of objects into orientation flows and frequency gradients, we can explain both types of percept. Specific patterns of orientation flows arise generically in retinal images of specific shapes and lead automatically to veridical percepts. This perceptual task is probably performed by hard-wired neural mechanisms, because it is affected by anisotropies in properties of early cortical cells, but not by conflicting haptic information. Frequency gradients in retinal images can arise from variations in distances or slants, but are perceived as if from distances even at the cost of ignoring pattern elements. However, the percepts can be corrected for surface slants with haptic feedback, indicating plastic mechanisms. Hardwired and plastic neural mechanisms thus play complementary roles in the perception of 3-D shapes from texture cues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams W, Graf E, Ernst M (2004) Experience can change the “light-from-above” prior. Nat Neurosci 7:1057–1058

    Article  Google Scholar 

  2. Albrecht D, Geisler W (1991) Motion selectivity and the contrast-response function of simple cells in the visual cortex. Vis Neurosci 7:531–546

    Article  Google Scholar 

  3. Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4:324–330

    Article  Google Scholar 

  4. Appelle S (1972) Perception and discrimination as a function of stimulus orientation: the “oblique effect” in man and animals. Psychol Bull 78:266–278

    Article  Google Scholar 

  5. Ben-Shahar O, Huggins P, Zucker S (2002) On computing visual flows with boundaries: the case of shading and edges. In: Biologically motivated computer vision. LNCS, vol 2525, pp 189–198

    Chapter  Google Scholar 

  6. Berkeley G (1702) An essay towards a new theory of vision. Dublin & London: 1732

    Google Scholar 

  7. Blake R, Sobel K, James T (2004) Neural synergy between kinetic vision and touch. Psychol Sci 15:397–402

    Article  Google Scholar 

  8. Blakemore C, Campbell F (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol 203(1):237–260

    Google Scholar 

  9. Blakemore C, Carpenter R, Georgeson M (1970) Lateral inhibition between orientation detectors in the human visual system. Nature 228(5266):37–39

    Article  Google Scholar 

  10. Bonds A (1989) Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis Neurosci 2:41–55

    Article  Google Scholar 

  11. Bonin V, Mante V, Carandini M (2005) The suppressive field of neurons in lateral geniculate nucleus. J Neurosci 25:10844–10856

    Article  Google Scholar 

  12. Bracewell RN (1995) Two-dimensional imaging. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  13. Breton P, Zucker S (1996) Shadows and shading flow fields. In: IEEE conf on computer vision and pattern recognition, pp 782–789

    Google Scholar 

  14. Brodatz P (1966) Textures: a photographic album for artists and designers. Dover, New York

    Google Scholar 

  15. Burbeck C, Kelly D (1981) Contrast gain measurements and the transient/sustained. J Opt Soc Am 71:1335–1342

    Google Scholar 

  16. Bürger R (2000) The mathematical theory of selection, recombination and mutation. Wiley, West Sussex

    MATH  Google Scholar 

  17. Campbell F, Robson J (1968) Application of Fourier analysis to the visibility of gratings. J Physiol 197:551–566

    Google Scholar 

  18. Carandini M, Heeger D, Movshon J (1997) Linearity and normalization in simple cells of the macaque primary visual cortex. J Neurosci 17:8621–8644

    Google Scholar 

  19. Carpenter R, Blakemore C (1973) Interactions between orientations in human vision. Exp Brain Res 18(3):287–303

    Article  Google Scholar 

  20. Chomsky N (1968) Language and mind. Harcourt Brace & World, New York

    Google Scholar 

  21. Chomsky N (1984) Modular approaches to the study of the mind. San Diego State University Press, San Diego

    Google Scholar 

  22. Clerc M, Mallat S (2002) The texture gradient equation for recovering shape from texture. IEEE Trans. Pattern Anal. Mach. Intell. 24(4):536–549

    Article  Google Scholar 

  23. Cohen E, Singh M (2006) Perceived orientation of complex shape reflects graded part decomposition. J Vis 6:805–821

    Article  Google Scholar 

  24. Cohen E, Zaidi Q (2007) Fundamental failures of shape constancy resulting from cortical anisotropy. J Neurosci 27:12540–12545

    Article  Google Scholar 

  25. Cohen E, Zaidi Q (2007) Salience of mirror symmetry in natural patterns [Abstract]. J Vis 7(9):970

    Article  Google Scholar 

  26. DeAngelis G, Robson J, Ohzawa I, Freeman R (1992) Organization of suppression in receptive fields of neurons in cat visual cortex. J Neurophysiol 68:144–163

    Google Scholar 

  27. Driver J, Noesselt T (2008) Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron 57:11–23

    Article  Google Scholar 

  28. Ernst M, Banks M (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  Google Scholar 

  29. Ernst M, Banks M, Bülthoff H (2000) Touch can change visual slant perception. Nat Neurosci 3:69–73

    Article  Google Scholar 

  30. Ernst M, Bülthoff H (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    Article  Google Scholar 

  31. Essock E (1980) The oblique effect of stimulus identification considered with respect to two classes of oblique effects. Perception 9:37–46

    Article  Google Scholar 

  32. Field D, Wu M (2004) An attempt towards a unifying account of non-linearities in visual neurons. J Vis 4:283a

    Article  Google Scholar 

  33. Filangieri C, Li A (2009) Three-dimensional shape from second-order orientation flows. Vis Res 49:1465–1471

    Article  Google Scholar 

  34. Fleming R, Torralba A, Adelson E (2004) Specular reflections and the perception of shape. J Vis 4(9):798–820

    Google Scholar 

  35. Freeman T, Durand S, Kiper D, Carandini M (2002) Suppression without inhibition in visual cortex. Neuron 35:759–771

    Article  Google Scholar 

  36. Garding J (1992) Shape from texture for smooth curved surfaces in perspective projection. J Math Imaging Vis 2:327–350

    Article  MATH  Google Scholar 

  37. Geisler W, Albrecht D, Salvi R, Saunders S (1991) Discrimination performance of single neurons: rate and temporal-pattern information. J Neurophysiol 66:334–362

    Google Scholar 

  38. Geisler W, Diehl R (2002) Bayesian natural selection and the evolution of perceptual systems. Philos Trans R Soc Lond B, Biol Sci 357:419–448

    Article  Google Scholar 

  39. Girshick A, Landy M, Simoncelli E (2011) Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat Neurosci 14:926–932

    Article  Google Scholar 

  40. Griffiths A, Zaidi Q (2000) Perceptual assumptions and projective distortions in a three-dimensional shape illusion. Perception 29:171–200

    Article  Google Scholar 

  41. Griffiths A, Zaidi Q (1998) Rigid objects that appear to bend. Perception 27:799–802

    Article  Google Scholar 

  42. Hansen B, Essock A (2004) A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. J Vis 4:1044–1060

    Article  Google Scholar 

  43. Heeger D (1992) Normalization of cell responses in cat striate cortex. Vis Neurosci 9:181–198

    Article  Google Scholar 

  44. Hel Or Y, Zucker S (1989) Texture fields and texture flows. Spat Vis 4:131–139

    Article  Google Scholar 

  45. Heller M (1992) Haptic dominance in form perception: vision versus proprioception. Perception 21:655–660

    Article  Google Scholar 

  46. Hoffman D, Richards W (1984) Parts of recognition. Cognition 18:65–96

    Article  Google Scholar 

  47. Holland J (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor

    Google Scholar 

  48. James T, Humphrey G, Gati J, Servos P, Menon R et al. (2002) Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40:1706–1714

    Article  Google Scholar 

  49. Kendall D, Barden D, Carne T, Le H (1999) Shape and shape theory. Wiley, Hoboken

    Book  MATH  Google Scholar 

  50. Knill D (2001) Contour into texture: information content of surface contours and texture flow. J Opt Soc Am A 18(1):12–35

    Article  Google Scholar 

  51. Koenderink J (1984) What the occluding contour tells us about solid shape. Perception 13:321–330

    Article  Google Scholar 

  52. Landy M, Maloney L, Johnston E, Young M (1995) Measurement and modeling of depth cue combination: in defense of weak fusion. Vis Res 35:389–412

    Article  Google Scholar 

  53. Lawson R (1999) Achieving visual object constancy across plane rotation and depth rotation. Acta Psychol 102:221–245

    Article  Google Scholar 

  54. Li A, Zaidi Q (2001) Erratum to “Information limitations in perception of shape from texture”. [Vis Res 41 (2001) 1519–1534]. Vis Res 41: 2927–2942

    Google Scholar 

  55. Li A, Zaidi Q (2003) Observer strategies in perception of 3-d shape from isotropic textures: developable surfaces. Vis Res 43:2741–2758

    Article  Google Scholar 

  56. Li A, Zaidi Q (2000) Perception of three-dimensional shape from texture is based on patterns of oriented energy. Vis Res 40:217–242

    Article  MATH  Google Scholar 

  57. Li A, Zaidi Q (2009) Release from cross-orientation suppression facilitates 3d shape perception. PLoS ONE 4(12):e8333

    Article  Google Scholar 

  58. Li A, Zaidi Q (2004) Three-dimensional shape from non-homogeneous textures: carved and stretched surfaces. J Vis 4:860–878

    Article  Google Scholar 

  59. Li A, Zaidi Q (2001) Veridicality of three dimensional shape perception predicted from amplitude spectra of natural textures. J Opt Soc Am A 18(10):2430–2447

    Article  Google Scholar 

  60. Li A, Tzen B, Yadgarova A, Zaidi Q (2008) Neural basis of 3-d shape aftereffects. Vis Res 48:244–252

    Article  Google Scholar 

  61. Li B, Peterson M, Freeman R (2003) Oblique effect: a neural basis in the visual cortex. J Neurophysiol 90:204–217

    Article  Google Scholar 

  62. Li B, Thompson J, Duong T, Peterson M, Freeman R (2006) Origins of cross-orientation suppression in the visual cortex. J Neurophysiol 96:1755–1764

    Article  Google Scholar 

  63. Lunghi C, Binda P, Morrone M (2010) Touch disambiguates rivalrous perception at early stages of visual analysis. Curr Biol 20:R143–R144

    Article  Google Scholar 

  64. MacEvoy S, Tucker T, Fitzpatrick D (2009) A precise form of divisive suppression supports population coding in the primary visual cortex. Nat Neurosci 12:637–645

    Article  Google Scholar 

  65. Malik J, Rosenholtz R (1997) Computing local surface orientation and shape from texture for curved surfaces. Int J Comput Vis 23(2):149–168

    Article  Google Scholar 

  66. Mansfield R (1974) Neural basis of orientation perception in primate vision. Science 186:1133–1135

    Article  Google Scholar 

  67. Mardia K, Dryden I (1989) The statistical analysis of shape data. Biometrika 76:271–281

    Article  MathSciNet  MATH  Google Scholar 

  68. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. Freeman, San Francisco

    Google Scholar 

  69. Marr D, Nishihara H (1978) Representation and recognition of the spatial organization of three-dimensional shapes. Proc R Soc Lond B, Biol Sci 200:269–294

    Article  Google Scholar 

  70. Maunsell J, Sclar G, Nealey T, DePriest D (1991) Extraretinal representations in area V4 in the macaque monkey. Vis Neurosci 7:561–573

    Article  Google Scholar 

  71. Meese T, Holmes D (2007) Spatial and temporal dependencies of cross-orientation suppression in human vision. Proc Biol Sci 274:127–136

    Article  Google Scholar 

  72. Meier L, Carandini M (2002) Masking by fast gratings. J Vis 2:293–301

    Article  Google Scholar 

  73. Meng X, Zaidi Q (2011) Visual effects of haptic feedback are large but local. PLoS ONE 6(5):e19877. doi:10.1371/journal.pone.0019877

    Article  Google Scholar 

  74. Morrone M, Burr D, Maffei L (1982) Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc R Soc Lond B, Biol Sci 216:335–354

    Article  Google Scholar 

  75. Mumford D (1992) On the computational architecture of the neocortex II. The role of cortico-cortical loops. Biol Cybern 66:241–251

    Article  Google Scholar 

  76. Murray S, Kersten D, Olshausen B, Schrater P, Woods D (2002) Shape perception reduces activity in human primary visual cortex. Proc Natl Acad Sci USA 99:15164–15169

    Article  Google Scholar 

  77. Newell F, Ernst M, Tjan B, Bülthoff H (2001) Viewpoint dependence in visual and haptic object recognition. Psychol Sci 12:37–42

    Article  Google Scholar 

  78. Nolt M, Kumbhani R, Palmer L (2007) Suppression at high spatial frequencies in the lateral geniculate nucleus of the cat. J Neurophysiol 98:1167–1180

    Article  Google Scholar 

  79. Olshausen B, Field D (2005) How close are we to understanding v1? Neural Comput 17:1665–1699

    Article  MATH  Google Scholar 

  80. Pasupathy A, Connor C (1999) Responses to contour features in macaque area V4. J Neurophysiol 82:2490–2502

    Google Scholar 

  81. Petrov Y, Carandini M, McKee S (2005) Two distinct mechanisms of suppression in human vision. J Neurosci 25:8704–8707

    Article  Google Scholar 

  82. Pizlo Z (2008) 3D shape: its unique place in visual perception. MIT Press, Cambridge

    Google Scholar 

  83. Pizlo Z, Stevenson A (1999) Shape constancy from novel views. Percept Psychophys 61:1299–1307

    Article  Google Scholar 

  84. Priebe N, Ferster D (2006) Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat Neurosci 9:552–561

    Article  Google Scholar 

  85. Purpura K, Mechler F, Schmid A, Ohiorhenuan I, Hu Q et al. (2007) Monocular correlates of 3d shape reduce suppression in V1 and V2 of macaques. Soc Neurosci Abstr 33:229.226

    Google Scholar 

  86. Rock I, Victor J (1964) Vision and touch: an experimentally created conflict between the two senses. Science 143:594–596

    Article  Google Scholar 

  87. Roeber U, Wong E, Freeman A (2008) Cross-orientation interactions in human vision. J Vis 8(3):15 (11 pp)

    Article  Google Scholar 

  88. Ross J, Speed H (1991) Contrast adaptation and contrast masking in human vision. Proc Biol Sci 246:61–69

    Article  Google Scholar 

  89. Ross J, Speed H, Morgan M (1993) The effects of adaptation and masking on incremental thresholds for contrast. Vis Res 33:2051–2056

    Article  Google Scholar 

  90. Sanger T (1996) Probability density estimation for the interpretation of neural population codes. J Neurophysiol 76:2790–2793

    Google Scholar 

  91. Schwartz O, Simoncelli E (2001) Natural signal statistics and sensory gain control. Nat Neurosci 4:819–825

    Article  Google Scholar 

  92. Series P, Latham P, Pouget A (2004) Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations. Nat Neurosci 7:1129–1135

    Article  Google Scholar 

  93. Sillito A (1979) Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. J Physiol 289:33–53

    Google Scholar 

  94. Simoncelli EP, Freeman WT (1995) The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: IEEE second int’l conf on image processing, Washington DC

    Google Scholar 

  95. Smith M, Bair W, Movshon J (2006) Dynamics of suppression in macaque primary visual cortex. J Neurosci 26:4826–4834

    Article  Google Scholar 

  96. Stein B, Stanford T (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9:255–266

    Article  Google Scholar 

  97. Stevens KA (1981) The visual interpretation of surface contours. Artif Intell 17:47–73

    Article  Google Scholar 

  98. Violentyev A, Shimojo S, Shams L (2005) Touch-induced visual illusion. NeuroReport 16:1107–1110

    Article  Google Scholar 

  99. Westheimer G (2003) Meridional anisotropia in visual processing: implications for the neural site of the oblique effect. Vis Res 43:2281–2289

    Article  Google Scholar 

  100. Wittgenstein L (1953) Philosophical investigations. Blackwell, Hoboken

    Google Scholar 

  101. Wong C, Zaidi Q (2008) Matched filters for 3-d shape from Kernel-Based image analysis. Vision Sciences Society, annual meeting 2008

    Google Scholar 

  102. Yamane Y, Carlson E, Bowman K, Wang Z, Connor C (2008) A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nat Neurosci 11:1352–1360

    Article  Google Scholar 

  103. Zaidi Q, Li A (2002) Limitations on shape information provided by texture cues. Vis Res 42:815–835

    Article  Google Scholar 

  104. Zaidi Q (2011) Visual inferences of material changes: color as clue and distraction. Cogn Sci 2(6):686–700

    Google Scholar 

Download references

Acknowledgements

This work was supported by NEI grants EY07556 and EY 13312 to QZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasim Zaidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Zaidi, Q., Li, A., Wong, C., Cohen, E.H., Meng, X. (2013). Hard-Wired and Plastic Mechanisms in 3-D Shape Perception. In: Dickinson, S., Pizlo, Z. (eds) Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5195-1_22

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5194-4

  • Online ISBN: 978-1-4471-5195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics