Skip to main content

Schema-Driven Influences in Recovering 3-D Shape from Motion in Human and Computer Vision

  • Chapter

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

To investigate the role of prior knowledge in perceiving the hollow-face illusion, we set out to correlate human performance with that of a computational model that tracks facial features. Toward this goal, we prepared a video of a thin human mask, realistically painted on both the convex and concave sides, that rotated by 360 degrees. It is well known that when humans view the rotating hollow part of the mask, they perceive it as a convex face that rotates in the opposite direction. We submitted this video as input to DeCarlo & Metaxas’s (Int. J. Comput. Vis. 38(2):99–127, 2000) face tracking algorithm that uses a combination of optical flow and feature alignment to track moving faces; importantly, the algorithm uses a schema of a 3-D convex face. The algorithm was fooled, as humans are, into misperceiving a concave face as a convex face rotating in the opposite direction. Notably, this is a significant case where a computer vision algorithm “experiences” an illusion. However, when the convex-face schema was replaced with a schema that allowed both convex and concave faces, the algorithm tracked the mask accurately. The similarity in the responses of the computer vision algorithm and human observers reinforces the hypothesis that a built-in convex 3D face schema imposes a depth inversion for concave faces that in turn forces the false interpretation of motion signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As Christopher Tyler commented, “vergence and accommodation would have to be derived over time by eye movements to provide shape information.”

References

  1. Adams WJ, Graf EW, Ernst MO (2004) Experience can change the ‘light-from-above’ prior. Nat Neurosci 7:1057–1058

    Article  Google Scholar 

  2. Aglioti S, DeSouza JFX, Goodale MA (1995) Size contrast illusions deceive the eye but not the hand. Curr Biol 5:679–685

    Article  Google Scholar 

  3. Ahissar M, Hochstein S (2004) The reverse hierarchy theory of perceptual learning. Trends Cogn Sci 8(10):457–464

    Article  Google Scholar 

  4. Banks MS, Backus BT (1998) Extra-retinal and perspective cues cause the small range of the induced effect. Vis Res 38:187–194

    Article  Google Scholar 

  5. Barlow HB (1997) The knowledge used in vision and where it comes from. Philos Trans R Soc Lond B, Biol Sci 352(1358):1141–1147

    Article  Google Scholar 

  6. Berbaum K, Bever T, Chung CS (1983) Light source position in the perception of object shape. Perception 12:411–416

    Article  Google Scholar 

  7. Berbaum K, Bever T, Chung CS (1984) Extending the perception of shape from known to unknown shading. Perception 13:479–488

    Article  Google Scholar 

  8. Caudek C, Fantoni C, Domini F (2011) Bayesian modeling of perceived surface slant from actively-generated and passively-observed optic flow. PLoS ONE 6(4):e18731

    Article  Google Scholar 

  9. Cook ND, Hayashi T, Amemiya T, Suzuki K, Leumann L (2002) Effects of visual field inversions on the reverse-perspective illusion. Perception 31:1147–1151

    Article  Google Scholar 

  10. DeCarlo D, Metaxas D (2000) Optical flow constraints on deformable models with applications to face tracking. Int J Comput Vis 38(2):99–127

    Article  MATH  Google Scholar 

  11. Dima D, Roiser JP, Dietrich DE, Bonnemann C, Lanfermann H, Emrich HM, Dillo W (2009) Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modeling. NeuroImage 46:1180–1186

    Article  Google Scholar 

  12. Dima D, Dillo W, Bonnemann C, Emrich HM, Dietrich DE (2011) Reduced P300 and P600 amplitude in the hollow-mask illusion in patients with schizophrenia. Psychiatry Res Neuroimaging 191:145–151

    Article  Google Scholar 

  13. Emrich HM, Leweke FM, Schneider U (1997) Towards a cannabinoid hypothesis of schizophrenia: cognitive impairments due to a dysregulation of the endogenous cannabinoid system. Pharmacol Biochem Behav 56:803–807

    Article  Google Scholar 

  14. Emrich HM, Weber MM, Wendl A, Zihl J, Von Meyer L, Hanisch W (1991) Reduced binocular depth inversion as an indicator of cannabis-induced censorship impairment. Pharmacol Biochem Behav 40:689–690

    Article  Google Scholar 

  15. Feldman J, Singh M (2006) Bayesian estimation of the shape skeleton. Proc Natl Acad Sci USA 103(47):18014–18019

    Article  MathSciNet  MATH  Google Scholar 

  16. Franz VH, Gegenfurtner KR, Bulthoff HH, Fahle M (2000) Grasping visual illusions: no evidence for a dissociation between perception and action. Psychol Sci 11:20–25

    Article  Google Scholar 

  17. Gilbert CD, Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 54:677–696

    Article  Google Scholar 

  18. Goldberg I, Harel M, Malach R (2006) When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50:329–339

    Article  Google Scholar 

  19. Goldreich D, Peterson MA (2012) A Bayesian observer replicates convexity context effects in figure-ground perception. Seeing Perceiving 25(3–4):365–395. doi:10.1163/187847612X634445

    Article  Google Scholar 

  20. Gregory RL (1968) Perceptual illusions and brain models. Proc R Soc B 171:279–296

    Article  Google Scholar 

  21. Gregory RL (1970) The intelligent eye. McGraw-Hill, New York, pp 126–131

    Google Scholar 

  22. Gregory RL (1980) Perceptions as hypotheses. Philos Trans R Soc Lond B, Biol Sci 290:181–197

    Article  Google Scholar 

  23. Gregory RL (1997) Knowledge in perception and illusion. Philos Trans R Soc Lond B, Biol Sci 352:1121–1128

    Article  Google Scholar 

  24. Gregory RL (2005) The Medawar lecture 2001 knowledge for vision: vision for knowledge. Philos Trans R Soc Lond B, Biol Sci 360(1458):1231–1251

    Article  Google Scholar 

  25. Held RT, Cooper EA, Banks MS (2012) Blur and disparity are complementary cues to depth. Curr Biol 22:426–431

    Article  Google Scholar 

  26. Helmholtz H (1910/1867). Handbuch der Physiologischen Optik, vol 3. Voss

    Google Scholar 

  27. Hill H, Bruce V (1993) Independent effects of lighting, orientation, and stereopsis on the hollow-face illusion. Perception 22(8):887–897

    Article  Google Scholar 

  28. Hill H, Bruce V (1994) A comparison between the hollow-face and ‘hollow-potato’ illusions. Perception 23:1335–1337

    Article  Google Scholar 

  29. Hill H, Johnston A (2007) The hollow-face illusion: object-specific knowledge, general assumptions or properties of the stimulus? Perception 36:199–223

    Article  Google Scholar 

  30. Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36:791–804

    Article  Google Scholar 

  31. Jain A, Zaidi Q (2011) Discerning nonrigid 3D shapes from motion cues. Proc Natl Acad Sci USA 108(4):1663–1668

    Article  Google Scholar 

  32. Jones MJ, Sinha P, Vetter T, Poggio T (1997) Top-down learning of low-level vision tasks. Curr Biol 7:991–994

    Article  Google Scholar 

  33. Keane BP, Silverstein SM, Wang Y, Papathomas TV (2013) Reduced depth illusions in schizophrenia: Evidence for a weakened, state-dependent convexity prior. J Abnormal Psych 122(2):506–512

    Article  Google Scholar 

  34. Kersten D, Yuille A (2003) Bayesian models of object perception. Curr Opin Neurobiol 13:1–9

    Article  Google Scholar 

  35. Kersten D, Mamassian P, Yuille A (2004) Object perception as Bayesian inference. Annu Rev Psychol 55:271–304

    Article  Google Scholar 

  36. Kleffner DA, Ramachandran VS (1992) On the perception of shape from shading. Percept Psychophys 52:18–36

    Article  Google Scholar 

  37. Koethe D, Gerth CW, Neatby MA, Haensel A, Thies M, Schneider U, Emrich HM, Klosterkotter J, Schultze-Lutter F, Leweke FM (2006) Disturbances of visual information processing in early states of psychosis and experimental delta-9-tetrahydrocannabinol altered states of consciousness. Schizophr Res 88:142–150

    Article  Google Scholar 

  38. Krekelberg B, Lappe M (2001) Neuronal latencies and the position of moving objects. Trends Neurosci 24:335–339

    Article  Google Scholar 

  39. Langer MS, Bülthoff HH (2001) A prior for global convexity in local shape-from-shading. Perception 30:403–410

    Article  Google Scholar 

  40. Palmer S (1999) Vision science: from photons to phenomenology. MIT Press, Cambridge

    Google Scholar 

  41. Papathomas TV (1999) The brain as a hypothesis-constructing-and-testing agent. In: LePore E, Pylyshyn Z (eds) What is cognitive science? Blackwell, Oxford, pp 230–247

    Google Scholar 

  42. Papathomas TV (2007) Art pieces that ‘move’ in our minds—an explanation of illusory motion based on depth reversal. Spat Vis 21:79–95

    Article  Google Scholar 

  43. Papathomas TV, Bono L (2004) Experiments with a hollow mask and a reverspective: top-down influences in the inversion effect for 3-d stimuli. Perception 33:1129–1138

    Article  Google Scholar 

  44. Pavlidis T (2012) Personal communication. December 15, 2012

    Google Scholar 

  45. Pizlo Z (2001) Perception viewed as an inverse problem. Vis Res 41(24):3145–3161

    Article  Google Scholar 

  46. Poggio T, Torre V, Koch C (1985) Computational vision and regularization theory. Nature 317:314–319

    Article  Google Scholar 

  47. Purves D, Lotto RB (2003) Why we see what we do. Sinauer, Sunderland

    Google Scholar 

  48. Ramachandran VS (1988) Perception of shape from shading. Nature 331:163–166

    Article  Google Scholar 

  49. Ramachandran VS (1995) Anosognosia in parietal lobe syndrome. Conscious Cogn 4(1):22–51

    Article  Google Scholar 

  50. Regan D, Erkelens CJ, Collewijn H (1986) Necessary conditions for the perception of motion in depth. Investig Ophthalmol Vis Sci 27:584–597

    Google Scholar 

  51. Richards W (2009) Configuration stereopsis: a new look at the depth-disparity relation. Spat Vis 22(1):91–103

    Article  Google Scholar 

  52. Rock I (1983) The logic of perception. MIT Press, Cambridge

    Google Scholar 

  53. Rogers B (2009) Motion parallax as an independent cue for depth perception: a retrospective. Perception 38(6):907–911

    Article  Google Scholar 

  54. Rogers B, Graham M (1979) Motion parallax as an independent cue for depth perception. Perception 8(2):125–134

    Article  Google Scholar 

  55. Rogers BJ, Gyani A (2010) Binocular disparities, motion parallax, and geometric perspective in Patrick Hughes’s ‘reverspectives’: theoretical analysis and empirical findings. Perception 39:330–348

    Article  Google Scholar 

  56. Semple DM, Ramsden F, McIntosh AM (2003) Reduced binocular depth inversion in regular cannabis users. Pharmacol Biochem Behav 75(4):789–793

    Article  Google Scholar 

  57. Schneider U, Borsutzky M, Seifert J, Leweke FM, Huber TJ, Rollnik JD, Emrich HM (2002) Reduced binocular depth inversion in schizophrenic patients. Schizophr Res 53:101–108

    Article  Google Scholar 

  58. Schneider U, Dietrich DE, Sternemann U, Seeland I, Gielsdorf D, Huber TJ, Becker H, Emrich HM (1998) Reduced binocular depth inversion in patients with alcoholism. Alcohol Alcoholism 33:168–172

    Article  Google Scholar 

  59. Schneider U, Leweke FM, Sternemann U, Weber MM, Emrich HM (1996) Visual 3D illusion: a systems-theoretical approach to psychosis. Eur Arch Psychiatry Clin Neurosci 246:256–260

    Article  Google Scholar 

  60. Sherman A, Papathomas TV, Jain A, Keane BP (2011) The roles of perspective, angle polarity, stereo and motion parallax in perceiving 3D objects. Seeing Perceiving 25:263–285

    Article  Google Scholar 

  61. Slyce J (2011) Patrick Hughes: perverspective, 3rd edn. Momentum, London

    Google Scholar 

  62. Sperling G, Landy MS (1989) Kinetic depth effect and identification of shape. J Exp Psychol Hum Percept Perform 15(4):826–840

    Article  Google Scholar 

  63. Sternemann U, Schneider U, Leweke FM, Bevilacqua CM, Dietrich DE, Emrich HM (1997) Pro-psychotic change of binocular depth inversion by sleep deprivation. Nervenarzt 68(7):593–596. [Article in German]

    Article  Google Scholar 

  64. Tyler CW, Kontsevich LL (1995) Mechanisms of stereoscopic processing: stereoattention and surface perception in depth reconstruction. Perception 24(2):127–153

    Article  Google Scholar 

  65. Uttal WR, Liu N, Kalki J (1996) An integrated computational model of three-dimensional vision. Spat Vis 9(4):393–422

    Article  Google Scholar 

  66. Vishwanath D, Blaser E (2010) Retinal blur and the perception of egocentric distance. J Vis 10(10):26

    Article  Google Scholar 

  67. Wade NJ, Hughes P (1999) Fooling the eyes: trompe l’oeil and reverse perspective. Perception 28:1115–1119

    Article  Google Scholar 

  68. Welchman AE, Harris JM, Brenner E (2009) Extra-retinal signals support the estimation of 3D motion. Vis Res 49:782–789

    Article  Google Scholar 

  69. Westheimer G (2008) Illusions in the spatial sense of the eye: geometrical-optical illusions and the neural representation of space. Vis Res 48(20):2128–2142

    Article  Google Scholar 

  70. Yellott JI Jr (1981) Binocular depth inversion. Sci Am 245:118–125

    Article  Google Scholar 

  71. Yuille A, Kersten D (2006) Vision as Bayesian inference: analysis by synthesis? Trends Cogn Sci 10:301–308

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Manpreet Kaur for conducting experiments on the hollow-mask illusion with human observers. We thank Christopher Tyler who reviewed the manuscript and offered valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas V. Papathomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Papathomas, T.V., DeCarlo, D. (2013). Schema-Driven Influences in Recovering 3-D Shape from Motion in Human and Computer Vision. In: Dickinson, S., Pizlo, Z. (eds) Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5195-1_28

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5194-4

  • Online ISBN: 978-1-4471-5195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics