Skip to main content

Two-Dimensional Shape as a Mid-Level Vision Gestalt

  • Chapter
  • 2824 Accesses

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

2-D shape constitutes an interesting case of a visual Gestalt, in the sense of a structured percept in which local features or parts are coded relative to a reference frame, interacting with one another, and giving rise to global properties that dominate perception. 2-D shape also constitutes a prototypical case of a mid-level vision phenomenon, meaning that its essential properties are processed somewhere mid-way along the cortical hierarchy, in a flexible and dynamical way, showing an intricate interplay between low- and high-level aspects of processing. Three lines of research are reviewed briefly to illustrate these principles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Attneave F (1954) Some informational aspects of visual perception. Psychol Rev 61:183–193

    Article  Google Scholar 

  2. Claessens PM, Wagemans J (2005) Perceptual grouping in Gabor lattices: proximity and alignment. Percept Psychophys 67:1446–1459

    Article  Google Scholar 

  3. De Winter J, Wagemans J (2004) Contour-based object identification and segmentation: stimuli, norms and data, and software tools. Behav Res Methods Instrum Comput 36:604–624

    Article  Google Scholar 

  4. De Winter J, Wagemans J (2006) Segmentation of object outlines into parts: a large-scale, integrative study. Cognition 99:275–325

    Article  Google Scholar 

  5. De Winter J, Wagemans J (2008) Perceptual saliency of points along the contour of everyday objects: a large-scale study. Percept Psychophys 70:50–64

    Article  Google Scholar 

  6. De Winter J, Wagemans J (2008) The awakening of Attneave’s sleeping cat: identification of everyday objects on the basis of straight-line versions of outlines. Perception 37:245–270

    Article  Google Scholar 

  7. Demeyer M, Machilsen B (2012) The construction of perceptual grouping displays using GERT. Behav Res Methods 44:439–446. doi:10.3758/s13428-011-0167-8

    Article  Google Scholar 

  8. Everitt BS, Dunn G (2001) Multidimensional scaling. In: Everitt BS, Dunn G (eds) Applied multivariate data analysis. Arnold, London, pp 93–124

    Google Scholar 

  9. Garner WR (1974) The processing of information and structure. Wiley, New York

    Google Scholar 

  10. Gillebert CR, Op de Beeck HP, Panis S, Wagemans J (2009) Subordinate categorization enhances the neural selectivity in human object-selective cortex for fine shape differences. J Cogn Neurosci 21:1054–1064

    Article  Google Scholar 

  11. Hartendorp MO, Van der Stigchel S, Burnett HG, Jellema T, Eilers PHC, Postma A (2010) Categorical perception of morphed objects using a free-naming experiment. Vis Cogn 18:1320–1347

    Article  Google Scholar 

  12. Hartendorp MO, Van der Stigchel S, Wagemans J, Klugkist I, Postma A (2012) The activation of alternative response candidates: when do doubts kick in? Acta Psychol 139:38–45

    Article  Google Scholar 

  13. Hogeboom MM (1995) On the dynamics of static pattern perception. PhD Thesis, University of Amsterdam, Amsterdam, The Netherlands

    Google Scholar 

  14. Kayaert G, Wagemans J (2010) Infants and toddlers show enlarged visual sensitivity to categorical compared to metric shape changes. i-Perception 1:149–158. doi:10.1068/i0397

    Article  Google Scholar 

  15. Koffka K (1935) Principles of Gestalt psychology. Lund Humphries, London

    Google Scholar 

  16. Kogo N, Strecha C, Van Gool L, Wagemans J (2010) Surface construction by a 2-d differentiation-integration process: a neurocomputational model for perceived border ownership, depth, and lightness in Kanizsa figures. Psychol Rev 117:406–439

    Article  Google Scholar 

  17. Kruschke JK (1992) ALCOVE: an exemplar-based connectionist model of category learning. Psychol Rev 99:22–44

    Article  Google Scholar 

  18. Machilsen B, Wagemans J (2011) Integration of contour and surface information in shape detection. Vis Res 51:179–186

    Article  Google Scholar 

  19. Medin DL, Goldstone RL, Gentner D (1993) Respects for similarity. Psychol Rev 100:254–278

    Article  Google Scholar 

  20. Nygård GE, Sassi M, Wagemans J (2011) The influence of orientation and contrast flicker on contour saliency of outlines of everyday objects. Vis Res 51:65–73

    Article  Google Scholar 

  21. Nygård GE, Van Looy T, Wagemans J (2009) The influence of orientation jitter and motion on contour saliency and object identification. Vis Res 49(20):2475–2484

    Article  Google Scholar 

  22. Ons B, De Baene W, Wagemans J (2011) Subjectively interpreted shape dimensions as privileged and orthogonal axes in mental shape space. J Exp Psychol Hum Percept Perform 37:422–441

    Article  Google Scholar 

  23. Ons B, Wagemans J (2011) Development of differential sensitivity for shape changes resulting from linear and nonlinear planar transformations. i-Perception 2:121–136. doi:10.1068/i0407

    Article  Google Scholar 

  24. Ons B, Wagemans J (2012) A developmental difference in shape processing and word-shape associations between 4 and 6.5 year olds. i-Perception 3:481–494. doi:10.1068/i0481

    Article  Google Scholar 

  25. Op de Beeck H, Béatse E, Wagemans J, Sunaert S, Van Hecke P (2000) The representation of shape in the context of visual object categorisation tasks. NeuroImage 12:28–40

    Article  Google Scholar 

  26. Op de Beeck H, Wagemans J (2001) Visual object categorization at distinct levels of abstraction: a new stimulus set. Perception 30:1337–1361

    Article  Google Scholar 

  27. Op de Beeck H, Wagemans J, Vogels R (2001) Macaque inferotemporal neurons represent low-dimensional configurations of parameterized shapes. Nat Neurosci 4:1244–1252

    Article  Google Scholar 

  28. Op de Beeck H, Wagemans J, Vogels R (2003) The effect of category learning on the representation of shape: dimensions can be biased but not differentiated. J Exp Psychol Gen 4:491–511

    Article  Google Scholar 

  29. Op de Beeck HP, Wagemans J, Vogels R (2008) The representation of perceived shape similarity and its role for category learning in monkeys: a modelling study. Vis Res 48:598–610

    Article  Google Scholar 

  30. Panis S, De Winter J, Vandekerckhove J, Wagemans J (2008) Identification of everyday objects on the basis of fragmented versions of outlines. Perception 37:271–289

    Article  Google Scholar 

  31. Panis S, Vangeneugden J, Op de Beeck H, Wagemans J (2008) The representation of subordinate shape similarity in human occipitotemporal cortex. J Vis 8(10):9. doi:10.1167/8.10.9

    Article  Google Scholar 

  32. Panis S, Vangeneugden J, Wagemans J (2008) Similarity, typicality, and category-level matching of outlines of everyday objects. Perception 37:1822–1849

    Article  Google Scholar 

  33. Panis S, Wagemans J (2009) Time-course contingencies in perceptual organization and identification of fragmented object outlines. J Exp Psychol Hum Percept Perform 35:661–687

    Article  Google Scholar 

  34. Pizlo Z (2008) 3-d shape: its unique place in visual perception. MIT Press, Cambridge

    Google Scholar 

  35. Rosch E, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P (1976) Basic objects in natural categories. Cogn Psychol 8:382–439

    Article  Google Scholar 

  36. Rossion B, Pourtois G (2004) Revisiting Snodgrass and Vanderwart’s object pictorial set: the role of surface detail in basic-level object recognition. Perception 33:217–236

    Article  Google Scholar 

  37. Sassi M, Machilsen B, Wagemans J (2012) Shape detection of Gaborized outline versions of everyday objects. i-Perception 3:745–764. doi:10.1068/i0499

    Article  Google Scholar 

  38. Sassi M, Vancleef K, Machilsen B, Panis S, Wagemans J (2010) Identification of everyday objects on the basis of Gaborized outline versions. i-Perception 1:121–142. doi:10.1068/i0384

    Article  Google Scholar 

  39. Snodgrass JG, Vanderwart M (1980) A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J Exp Psychol Hum Learn Mem 6:174–215

    Article  Google Scholar 

  40. Torfs K, Panis S, Wagemans J (2010) Identification of fragmented object outlines: a dynamic interplay between different component processes. Vis Cogn 18:1133–1164

    Article  Google Scholar 

  41. Verstijnen I, Wagemans J (2004) Ambiguous figures: living versus nonliving objects. Perception 33:531–546

    Article  Google Scholar 

  42. Wagemans J, De Winter J, Op de Beeck HP, Ploeger A, Beckers T, Vanroose P (2008) Identification of everyday objects on the basis of silhouette and outline versions. Perception 37:207–244

    Article  Google Scholar 

  43. Zahn CT, Roskies RZ (1972) Fourier descriptors for plane closed curves. IEEE Trans Comput 21:269–281

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am supported by long-term structural funding from the Flemish Government (METH/08/02). This chapter was written during my sabbatical, with support from the Research Foundation–Flanders (K8.009.12N). I would also like to acknowledge the hospitality of the Department of Psychology at the University of California, Berkeley, the “Institut d’études avancées” (IEA), Paris, and the Department of Experimental Psychology at the University of Oxford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Wagemans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Wagemans, J. (2013). Two-Dimensional Shape as a Mid-Level Vision Gestalt. In: Dickinson, S., Pizlo, Z. (eds) Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5195-1_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5194-4

  • Online ISBN: 978-1-4471-5195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics