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Abstract Re-identification of pedestrians in video-surveillance settings can be ef-
fectively approached by treating each human figure as an articulated body, whose
pose is estimated through the framework of Pictorial Structures (PS). In this way,
we can focus selectively on similarities between the appearance of body parts to
recognize a previously seen individual. In fact, this strategy resembles what humans
employ to solve the same task in the absence of facial details or other reliable bio-
metric information. Based on these insights, we show how to perform single image
re-identification by matching signatures coming from articulated appearances, and
how to strengthen this process in multi-shot re-identification by using Custom Picto-
rial Structures (CPS) to produce improved body localizations and appearance signa-
tures. Moreover, we provide a complete and detailed breakdown of the system that
surrounds these core procedures, with several novel arrangements devised for effi-
ciency and flexibility. Finally, we test our approach on several public benchmarks,
obtaining convincing results.

1 Introduction
Human re-identification (re-id) consists in recognizing a person in different loca-
tions over various non-overlapping camera views. We adopt the common assump-
tion that individuals do not change their clothing within the observation period, and
that finer biometric cues (face, fingerprint, gait, etc..) are unavailable: we consider,
that is, only appearance-based re-id.

In this paper, we present an extensive methodology for person re-id through artic-
ulated appearance matching, based on Pictorial Structures (PS) [17], and its variant

Dong Seon Cheng
Dept. of Computer Science & Engineering, HUFS, Korea, e-mail: cheng_ds@hufs.ac.kr

Marco Cristani
Dip. di Informatica, University of Verona, Italy, e-mail: marco.cristani@univr.it

1

cheng_ds@hufs.ac.kr
marco.cristani@univr.it


2 Dong Seon Cheng and Marco Cristani

(b)(a) (c)

Fig. 1: Re-id performed by a human subject: (a) the test probe, (b) the correct match
in the gallery, and (c) the fixation heat maps from eye-tracking over consecutive 1s
intervals - the hotter the color, the longer the time spent looking at that area.

Custom Pictorial Structures (CPS) [9], to decompose the human appearance into
body parts for pose estimation and signature matching. In the PS framework of [1],
the parts are initially located by general part detectors, and then a full body pose
is inferred by solving their kinematic constraints. In this work, we propose a novel
type of part detector, fast to train and to use, based on the histogram of oriented gra-
dients (HOG) [10] features and a linear discriminant analysis (LDA) [25] classifier.
Moreover, we use the belief propagation algorithm to infer MAP body configura-
tions from the kinematic constraints, represented as a tree-shaped factor graph.

More in general, our proposal takes inspiration from how humans approach
appearance-based re-id. As we showed in [9], monitoring subjects performing re-
id confirmed a tendency to scan for salient (structurally known) parts of the body,
looking for part-to-part correspondences (we reproduce a sample of the study in
Fig. 1). We think that encoding and exploiting the human appearance per parts is
a convenient strategy for re-id, and PS is particularly well suited to this task. In
particular, we exploit the conventional PS fitting on separate individual images for
single-shot re-id, which consists in matching pairs probe/gallery of images for each
subject. Our approach aims at obtaining robust signatures from features extracted
from the segmented parts.

Secondly, for multi-shot re-id, where each subject has multiple images distributed
between probe set and gallery set, we can use the extra information to improve the
re-id process in two ways: by improving the PS fitting using the CPS algorithm [9]
that iteratively performs appearance modeling and pose estimation, and by using set-
matching to compute distances between probe set and gallery set. The rationale of
CPS is that the local appearance of each part should be relatively consistent among
images of the same subject, and hence it is possible to build an appearance model.
Thus, localizing parts can be enhanced by evaluating the similarity to the model.

Our goal in this work is to crystallize the use of PS for re-id with a complete
and detailed breakdown of the stages in our process. We intend to introduce several
novel arrangements devised for efficiency and flexibility, with an eye towards future
extensions. In particular, we introduce a new class of part detectors based on HOG
features and linear discriminant analysis to feed the PS pose estimation algorithm,
and a new color histogram technique to extract feature vectors. Experiments have
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been carried out on many publicly available datasets (iLIDS, ETHZ1,2,3, VIPeR,
CAVIAR4REID) with convincing results in all modalities,

The chapter is organized as follows: we analyze related work in Sec. 2; we pro-
vide an overview of our approach in Sec. 3 and all the detail in Sec. 4; we provide
details about the training of our part detectors in Sec. 5; and we discuss the experi-
ments in Sec. 6. Finally, Sec. 7 wraps up with remarks and future perspectives.

2 State of the art
Pictorial structures: The literature on PS is large and multifaceted. Here, we
briefly review the studies that focus on the appearance modeling of body parts.
We can distinguish two types of approaches: the single-image and multiple-image
methods. In the former case, a PS processes each image individually. In [30], a two-
step image parsing procedure is proposed, that enriches an edge-based model by
adding chromatic information. In [12], a learning strategy estimates relations be-
tween body parts and a shared color-based appearance model is used to deal with
occlusions. In the other case, several images representing a single person are avail-
able. Very few methods deal with this situation. In [31], two approaches for building
PS have been proposed for tracking applications. A top-down approach automati-
cally builds people models starting by convenient key poses detections; a bottom-up
method groups together candidate body parts found along the considered sequence
exploiting spatio-temporal reasoning. This technique shares some similarities with
our approach, but it requires a high number of temporally consecutive frames (50-
100). In our setting, few (≤5), unordered images are instead expected. In a photo-
tagging context, PS are grown over face detections to recognize few people [36],
modeling the parts with Gaussian distributions in the color space. ADDITIONAL
REQUESTED SOTA, DPM[15].

Re-identification: Appearance-based techniques for re-identification can be orga-
nized in two groups of methods: learning-based and direct approaches. In the for-
mer, a dataset is split into training and test sets, with the training individuals used
to learn features and/or strategies for combining features to achieve high re-id ac-
curacy, and the test ones used as validation. Direct methods are instead pure feature
extractors. An orthogonal classification separates the single-shot and the multi-shot
techniques. As learning-based methods, an ensemble of discriminant localized fea-
tures and classifiers is selected by boosting in [23]. In [26], pairwise dissimilarity
profiles between individuals are learned and adapted for nearest-neighbor classifi-
cation. Similarly, in [34], a high-dimensional signature formed by multiple features
is projected onto a low-dimensional discriminant space by Partial Least Squares
reduction. Contextual visual information is exploited in [40], enriching a bag-of-
word-based descriptor by features derived from neighboring people, assuming that
people stay together across different cameras. [3] casts re-id as a binary classifica-
tion problem (one vs. all), while [29, 41] as a relative ranking problem in a higher
dimensional feature space where true and wrong matches become more separable.
In [18], re-identification is cast as a semi-supervised single-shot recognition prob-
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Fig. 2: Diagram of the stages in our approach. In single-shot mode, the estimated
pose of the articulated human figure is used to segment the image and extract the
features, joined into a signature. In multi-shot mode, with multiple images for each
pedestrian, we model the common appearance of its parts, and thus refine the part
detections with additional evidence, to be able to improve the pose estimation.

lem where multiple features are fused at the classification output level, using the
multi-view learning approach of [27]. Finally, re-identification is cast as a Multiple
Instance Learning in [33], where in addition a method for synthetically augmenting
the training dataset is presented.

As direct methods, a spatio-temporal local feature grouping and matching is pro-
posed in [21]: a decomposable triangulated graph is built that captures the spatial
distribution of the local descriptions over time. In [37], images are segmented into
regions and their color spatial relationship acquired with co-occurrence matrices.
In [24], interests points (SURF) are collected in subsequent frames and matched.
Symmetry and asymmetry perceptual attributes are exploited in [14, 7], based on
the idea that features closer to the bodies’ axes of symmetry are more robust against
scene clutter. Covariance features, originally employed for pedestrian detection, are
tailored in [4] for re-id, extracted from coarsely located body parts; later on, such
descriptors are embedded into a learning framework in [2] In [8], epitomic analy-
sis is used to collapse a set of images into a small collage of overlapped patches
containing the essence of textural, shape and appearance properties. To be brief, in
addition to color, a large number of features types is employed for re-id: textures
[23, 34, 14, 29], edges [34], Haar-like features [3], interest points [21] and image
regions [23, 37, 14]. The features, when not collected densely, can be extracted
from horizontal stripes, triangulated graphs, concentric rings [40], symmetry-driven
structures [14, 7], and localized patches [4]. Very recently, depth-based methods in-
clude into the analysis other modalities and sensors (such as RGB-D cameras) to
extract 3D soft-biometric cues from depth images: this will avoid the constraint that
people must be dressed in the same way during a re-identification session [6]. An-
other unconventional application of re-identification considers Pan-Tilt-Zoom cam-
eras, where distances between signatures are also computed across different scales
[32].

For an extensive review on the re/identification methods, please see [11].
Our method lies in the class of the direct approaches, and can work in both single-

and multi-shot modes.



Person Re-identification by Articulated Appearance Matching 5

100

67

42

3 3

13 13

53 53

24 24

Fig. 3: (Left) Two illustrative lineups in single-shot re-identification from the VIPeR
experiments: the leftmost image is the probe and the rest are gallery images sorted
by increasing distance from the probe. The correct match is shown with a green
outline. (Right) Model of the articulated human figure, with percentages and color
intensities proportional to the importance of a part in the VIPeR experiment.

3 Overview of our approach
This section gives an overview of our re-identification process, which is summarized
in Fig. 2. Implementation details of each stage can be found later, in Section 4. The
method is based on obtaining good pedestrian segmentations from which effective
re-identification signatures can be extracted. The basic idea is that we can segment
accurately after we estimate the pose of the human figure within each image, and
this pose estimation can be performed with Pictorial Structures.

The single-shot modality

Every image is processed individually to retrieve a feature vector that acts as its
signature. By calculating distances between signatures, we can match a given probe
image against a set of gallery images, ranking them from lowest to highest distance,
and declaring the rank-1 gallery to be our guess for the identity of the probe.

Our proposed approach tries to increase the effectiveness of the signatures by fil-
tering out as much of the background scene as possible, and by decomposing a full
pedestrian figure into semantically reasonable body parts (like head, torso, arms and
legs) in such a way that we can compose a full signature by joining part signatures.
This increases the robustness of the method to partial (self)occlusions and changes
in local appearance, like the presence of bags, different looks between frontal, back
and side views, and imperfections in the pose estimation. Fig. 3 (left) shows two
cases from the VIPeR experiment, illustrating several aspects of the problems just
mentioned. It is clear that the segmentations provide a good filtering of the back-
ground scene, even when they do not perfectly isolate the pedestrian figure.

However, the decomposition into parts is not sufficient to overcome persistent
dataset-wise occlusions or poor image resolution. For example, the iLIDS dataset
is made up of images taken from airport cameras, and an overwhelming number of
pedestrians are captured with several bags, backpacks, trolleys and other occluding
objects (including other different pedestrians). In this challenging situation, legs and
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arms are often hidden and their discriminating power is greatly reduced. Therefore,
our approach is to balance the contributions of each part through a weight that indi-
cates, percentage wise, its importance with respect to the torso, which remains the
main predictor. Fig. 3 (right) shows the weights for the VIPeR experiment.

The multi-shot modality

Multi-shot re-identification is performed when probe and gallery sets are made of
multiple images for each subject. We can exploit this situation in two ways: firstly,
by using set matching (the minimal distance across all pairs) when comparing signa-
tures, so that the most unlike matches are discarded; secondly, by improving the pose
estimations based on the appearance evidence. We create this evidence by building
an appearance model of each pedestrian and using it to localize his parts with greater
accuracy than just by using the generalized part detectors. Then, we feed this infor-
mation back into the PS algorithm to compute new pose estimations, and hence
segmentations. This process can be repeated until we reach a satisfactory situation.

In the end, our goal is to reinforce a coherent image of pedestrians, such that
we can compute more robust signatures. Then, with multiple signatures available,
the most natural way to match a probe set to the gallery sets is to find the closest
pairs: this potentially matches frontal views with frontal views, side views with side
views, occluding bags with occluding bags, and so on.

4 Details of our approach
We now give a detailed description of the stages in our re-identification approach,
with a critical review of our previous method [9], where we adapted Andriluka’s
publicly available Pictorial Structures code to perform articulated pose estimation.
Here instead, we developed a new and completely independent system with a novel
part detector and our own implementation of the Pictorial Structures algorithm.

4.1 Part Detection

In [1], the authors use discriminatively trained part detectors to feed their articulated
pose estimation process. In particular, their part detectors densely sample a shape
context descriptor that captures the distribution of locally normalized gradient ori-
entations in a log-polar histogram. With 12 bins for the location and 8 bins for the
gradient orientation, they obtain 96 dimensional descriptors. Then, they concatenate
the histograms of all shape context descriptors falling inside the bounding box of a
part. During detection, many positions, scales, and orientations of parts are scanned
in a sliding window fashion. All color images are converted to gray-scale before
feature extraction.

To classify the feature vectors, they train an AdaBoost classifier [20] using as
weak learners simple decision stumps that test histogram bins against a thresh-
old. More formally, given a feature vector x, there are t = 1, . . . ,T stump functions
ht(x) = sign(ξt(xn(t)−ϕt)), where ϕt is a threshold, ξt is a label equal to ±1, and
n(t) is the index of the bin chosen by the stump. Training the AdaBoost classifier



Person Re-identification by Articulated Appearance Matching 7

Part Image
STEP 1

Compute
gradients

STEP 2

Compute
histograms

STEP 3

Aggregate
by cells

STEP 4

Normalize
by blocks

Feature Vector

Fig. 4: Overview of the HOG feature extraction.

results in a strong classifier Hi(x) = sign(∑t αi,tht(x)) for each part i, where αi,t are
the learned weights of the weak classifiers.

During training, each annotated part is scaled and rotated to a canonical pose
prior to learning, and the same process is applied during testing of candidate parts.
The negative feature vectors come from sampling the image regions outside the
objects, and the classifiers are then re-trained with a new training set augmented
with false positives from the initial round. The classifier outputs are then converted
into pseudo-probabilities by interpreting the normalized classifier margin as follows:

fi(x) =
∑t αi,tht(x)

∑t αi,t
(1)

p̃(di|li) = max( fi(x(li)),ε0), (2)

where x(li) is the feature vector for part configuration li, and ε0 = 10−4 is a cutoff
threshold. Even if the authors claim it works well, this simple conversion formula
in fact produces poorly calibrated probabilities, as it is known that AdaBoost with
decision stumps sacrifices the margin of the easier cases to obtain larger margins
on cases close to the decision surface [35]. Our experience suggests that it produces
weak and sparse candidate part configurations, because the decision boundary is
assigned probability zero (not 0.5 as you would expect) and the weak margins (none
of which approach 1) are linearly mapped to probabilities. A better choice would be
to calibrate the predictions using Platt scaling [28].

4.1.1 The HOG-LDA detector

Histograms of oriented gradients (HOG) features for pedestrian detection were first
introduced by Dalal and Triggs in [10]. They proved to be efficient and effective
for object detection, not only pedestrians, both as wholes and as collection of parts
[39]. The HOG features are usually combined with a linear SVM classifier, but [25]
shows that an opportunely trained linear discriminant analysis (LDA) classifier can
be competitive while being faster, and easier, to train and test

Calculating the HOG features requires a series of steps, shown summarized in
Fig. 4. At each step, Dalal and Triggs experimentally show that certain choices
produce better results than others, and they call the resultant procedure the default
detector (HOG-dd). Like other recent implementations [16], we largely operate the
same choices, but also introduce some tweaks.

STEP 1. Here, we assume the input is an image window of canonical size for the
body part we are considering. Like in HOG-dd, we directly compute the gradients
with the masks [−1,0,1]. For color images, each RGB color channel is processed
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separately, and pixels assume the gradient vector with the largest norm. While it
does not take full advantage of the color information, it is better than discarding
it like in the Andriluka’s detector.

STEP 2. Next, we turn each pixel gradient vector into an histogram by quantizing
its orientation into 18 bins. The orientation bins are evenly spaced over the range
0◦− 180◦ so each bin spans 10◦. For pedestrians there is no a-priori light/dark
scheme between foreground and background (due to clothes and scenes) that jus-
tifies the use of the “signed” gradients with range 0◦−360◦: in other words, we
use the contrast insensitive version [16]. To reduce aliasing, when an angle does
not fall squarely in the middle of a bin, its gradient magnitude is split linearly
between the neighboring bin centers. The outcome can be seen as a sparse image
with 18 channels, which is further processed by applying a spatial convolution,
to spread the votes to 4 neighboring pixels [38].

STEP 3. We then spatially aggregate the histograms into cells made by 7×7 pixel
regions, by defining the feature vector at a cell to be the sum of its pixel-level
histograms.

STEP 4. As in the HOG-dd, we group cells into larger blocks and contrast nor-
malize each block separately. In particular, we concatenate features from 2× 2
contiguous cells into a vector v, then normalize it as ṽ = min(v/||v||,0.2), L2
norm followed by clipping. This produces 36-dimensional feature vectors for
each block. The final feature vector for the whole part image is obtained by con-
catenating the vectors of all the blocks.

When the initial part image is rotated such that its orientation is not aligned with the
image grid, the default approach is to normalize this situation by counter-rotating
the entire image (or the bounding box of the part) before processing it as a canonical
window. This can be computationally expensive during training, where image parts
have all sorts of orientations, and during testing, even if we limit the number of
detectable angles. Furthermore, dealing with changes in the scaling factor of the
human figures and the foreshortening of limbs introduces additional computational
burdens. In the following, we introduce a novel approximation method that manages
to speed up the detection process.

Rotation and Scaling Approximation

Let p be a body part defined by a matrix of Mp×Np cells (see Fig. 5). Rotating this
part by θ degrees away from the vertical orientation creates two problems: how to
compute the histograms in STEP 2, and how to aggregate them by cells in STEP 3.
STEP 1 can compute gradients regardless of the rotation and STEP 4 does not care
after we have the cell aggregates.

The first problem arises because we need to collect a histogram of the gradient
angles with respect to the axis of the rotated part, and they are instead expressed
with respect to the image grid. We propose our first approximation: with a fine
enough binning of the histograms (our resolution of 10◦ is double the HOG-dd), we
can approximate the “rotated” histograms by circularly shifting the bin counts of
the neutral histograms of −rθ places, where rθ = round(θ/10◦). This operation is
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Fig. 5: Rotation approximation for a part defined by a matrix of 5× 3 cells. From
left to right: (a) default configuration with disjointed cells, (b) clockwise rotation
by 20◦, (c) approximation by non-rotated cells, (d) tighter configuration with cells
overlapping by 1 pixel on each side, (e) rotation approximation of the tighter con-
figuration. This approximation allows us to use the integral image technique.

much more efficient than re-computing the features after counter-rotating the source
image, and can be performed fast for all the rotation angles we are interested in.

We solve the second problem by approximating the rotated cells with no rotation
at all. As can be seen in Fig. 5), this leaves quite large holes in the covering of the
part image, which is only partially mitigated by the spatial convolution in STEP 2
that spreads bin votes around. Our solution is to use a tighter packing of the cells,
overlapped by 1 pixel on each side, so that they leave much smaller holes even at
the worst angle for this approximation. The main purpose of avoiding rotated cells
is that we can now use the integral image trick to efficiently aggregate histograms
by cells for detection.

Scaling and foreshortening can be approached similarly, just by scaling the cells
size (smaller or bigger than 7× 7 pixels) and positioning them appropriately. As a
partial motivation, [39] show that conveniently placed parts (cells in our approach)
can effectively cope with perspective warps like foreshortening. As before, if we
want to obtain HOG feature vectors for a different scaling factor, we can directly
start with STEP 3 without going back to the start of the algorithm.

Efficient Detection

Detection of a given part from a new image is usually performed with a sliding
window approach: a coarse or fine grid of detection points is selected, and the im-
age is tested at each point by the detector, once for every orientation angle and
scale allowed for the part (we usually are not interested in all angles or scales for
pedestrians). This means extracting HOG feature vectors for many configurations of
position, orientation, scale, and all the approximations introduced so far make this
task very efficient, especially when we use the integral image technique.

In fact, at the end of STEP 2, instead of providing the gradient histograms, we
compute their integral image, so that all sums in STEP 3 can be performed in con-
stant time for each cell, in every configuration we wish for. If the resolution of the
orientation angles matches the one in the histograms binning, we expect the least
amount of information loss to happen in the approximations.
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The last component of our fast detection algorithm is the LDA classifier. As
shown in [25], LDA models can be trained almost trivially, and with little or no
loss in performance compared to SVM classifiers. An LDA model classifies a given
feature vector xi as a part p instead of background if

wt
pxi− cp > 0 (3)

where
wp = S−1(mp−mbg) (4)
cp = wt

p(mp +mbg)/2. (5)

The background mean mbg and the common covariance S are trained from many
images including different objects and scenes, and mp is trained from feature vectors
extracted from annotated images (see left Fig. 6).

Furthermore, given the scores fi = wt
pxi− c, we retrieve well calibrated proba-

bility values p(xi) using the Platt scaling method [28], where

p(xi) =
1

1+ exp(A fi +B)
(6)

and the parameters A and B are found using maximum likelihood estimation as

argmin
A,B
{−∑

i
yi log p(xi)+(1− yi) log(1− p(xi))} (7)

using the calibration set ( fi,yi) with labels yi ∈ {0,1}.

4.2 Pose estimation

After the part detectors independently scan an input image, giving us image evi-
dence D = {dp}, it is time to detect full body configurations, denoted as L = {lp},
where lp = (xp,yp,ϑp,sp) encodes position, orientation and scale of part p, re-
spectively. In Pictorial Structures (PS), the posterior of L is modeled as p(L|D) ∝

p(D|L)p(L), where p(D|L) is the image likelihood and p(L) is a prior modeling the
links between parts. The latter is also called the kinematic prior because it can be
seen as a system of masses (parts) and springs (joints) that rule the body’s motions.

In fact, we can represent the prior as a factor graph (see Fig. 6), where we have
two types of factors: the detection maps p(dp|lp) (gray boxes) and the joints p(li|l j)
(black boxes). This graph is actually a tree with the torso p= 1 as root, which means
that we can use standard (non loopy) belief propagation to get the MAP estimates.

In particular, the joints are modeled as Gaussian distributions around the mean
location of the joint, and messages passing from part i to part j can be quickly com-
puted by using Gaussian convolution in the coordinate system of the joint, reachable
by applying a transformation li j = Ti j(li) from part i and T−1

ji (li j) towards part j.
After training, a learned prior is made up of these transformations together with the
joint covariances (see Fig. 6).

Furthermore, if we only require a single body detection (the default situation
with one pedestrian per image), only the messages from the leaves to the root
must be accurately computed. At that point, the MAP estimate for the torso is
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Fig. 6: (left) Composite image showing the positive weights in all the model weights
wp after training: each block shows the gradients that vote positively towards a part
identification, with brighter colors in proportion to the vote strength. (center) Factor
graph of the kinematic prior model for pose estimation. (right) Learned model of the
relative position and rotation of the parts, including spatial localization covariances
of the joints.

l̂1 = argmaxl1 p(l1), and single delta impulses at l̂p can be messaged back to the
leaves to find the MAP configurations for the other body parts.

Differently from other PS implementations for human figures, we decided to
create configurations of 11 parts, adding a shoulders part, following the intuition
of Dalal [10] that the head-shoulders combination seems to be critical for a good
pedestrian detection.

4.3 Pedestrian Segmentation

To obtain well discriminating signatures, it is crucial to filter out as much of the
background scene as possible, which is a potential source of spurious matches. Af-
ter computing the pose estimation, we retrieve a segmentation of the image into
separate body part regions, depending on the position and orientiation within the
full body configuration. We encode such information in the form of image masks:
thus, we get 11 body part masks and a combined set-union full body mask. We
experimented early on several methods to further refine the masks to remove the
residual background, but all such attempts resulted in worse performances. In part,
this is due to the limited size of the images, usually cropped close to the pedestrian,
that makes figure/background inference difficult.



12 Dong Seon Cheng and Marco Cristani

Fig. 7: (Left) A sample image from VIPeR with parts segmentation. (Center) Color
histogram features, shown here separately for the 11 parts, each comprising of a his-
togram of grays and a histogram of colors. (Right) Blobs from the MSCR operator.

4.4 Feature Extraction

Having the masks, the task is to identify feature extraction methods that provide
discriminating and robust signatures. As in our previous work [9], we rely on two
proven techniques: color histograms and maximally stable color regions (MSCR)
[19]. We experimented on several different variants of color histograms, both in our
previous work and in this one: it is our experience that each dataset is suited to
certain methods rather than others, with no method clearly outperforming the rest.

However, we reached a good compromise with a variant that separates shades
of gray from colored pixels. We first convert all pixel values (r,g,b) to the HSV
color space (h,s,v), and then we perform the following selections: all pixels with
value v < τblack are counted in the bin of blacks, all remaining pixels with saturation
s < τgray are counted in the gray bins according to their value v, all remaining pixels
are counted in the color bins according to their hue-saturation coordinates (h,s).

We basically count the dark and unsaturated pixels separately from the others,
and we ignore the brightness of the colored pixels, counting only their chromaticity
in a 2D histogram (see Fig. 7). This procedure is also tweaked in several ways to
improve speed and accuracy: the HSV channels are quantized into [20,10,10] lev-
els, the votes are (bi)linearly interpolated into the bins to avoid aliasing, the residual
chromaticity of the gray pixels is counted into the color histograms with a weight
proportional to their saturation s. The image regions of each part are processed sep-
arately and provide a combined grays-colors histogram (GC histogram in short)
which is vectorized and normalized. We then multiply each of these histograms
by the part relevance weights λp (shown for example in Fig. 3 (right)), and then
concatenate and normalize to form a single feature vector. Moreover, we allow the
algorithm to adapt to particular camera settings by varying the importance of grays
vs colors with a weight wG, which can be tuned for each dataset.

Independently, the full body masks are used to constrain the extraction of the
MSCR blobs. The MSCR operator detects a set of blob regions by looking at suc-
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cessive steps of an agglomerative clustering of image pixels. Each step groups
neighboring pixels with similar color within a threshold that represents the max-
imal chromatic distance between colors. Those maximal regions that are stable
over a range of steps become MSCR blobs. As in [14], we create a signature
MSCR = {(yi,ci)|i = 1, . . . ,N} containing the height and color of the N blobs. The
algorithm is setup in a way that provides many small blobs and avoids creating ones
too big (see Fig. 7). The rationale is that we want to localize details of the pedestri-
ans appearance, which is more accurate for small blobs.

4.5 Signatures Matching

The color histograms and the MSCR blobs ultimately form our desired image signa-
tures. Matching two signatures Ia = (ha,MSCRa) and Ib = (hb,MSCRb) is carried
out by calculating the distance

d(Ia, Ib) = β ·dh(ha,hb)+(1−β ) ·dMSCR(MSCRa,MSCRb), (8)

where β balances the Bhattacharyya distance dh(ha,hb) =− log(
√

ha
t√hb) and the

MSCR distance dMSCR. The latter is obtained by first computing the set of distances
between all blobs (yi,ci) ∈MSCRa and (y j,c j) ∈MSCRb:

vi j = γ ·dy(yi,yi)+(1− γ) ·dlab(ci,c j) (9)

where γ balances the height distance dy = |yi− y j|/H and the color distance dlab =
‖labcie(ci)− labcie(c j)‖/200, which is the Euclidean distance in the LABCIE color
space. Then, we compute the sets Ma = {(i, j)|vi j ≤ vik} and Mb = {(i, j)|vi j ≤ vk j}
of minimum distances from the two point of views, and finally obtain their average:

dMSCR(MSCRa,MSCRb) =
1

|Ma∪Mb| ∑
(i, j)∈Ma∪Mb

vi j. (10)

The normalization factor H for the height distance is set to the height of the images
in the dataset, while the parameters β and γ are tuned through cross-validation.

Additionally, we have experimented with different distances than the Bhat-
tacharyya, like Hellinger, L1, L2, Mahalanobis, χ2, but performances were inferior.

4.6 Multi-shot Iteration

In multi-shot mode, we use CPS to improve the segmentations before extracting the
features. This is a two-step iterative process that alternates between setting/updating
the appearance model for the parts and updating the pose estimations. At the first
iteration, we start with the conventional PS fittings, fed by the general part detec-
tors. We thus collect all the part regions in the given images, normalize the different
orientations, and stack them to estimate their common appearance. In particular,
CPS employs a Gaussian model N (µk,σk) in RGB space for all pixels k. In order
to reinforce the statistics, the samples are extended by including spatial neighbors
of similar color by performing k-means segmentation on each subimage t and in-
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Table 1 Setup of the HOG-
LDA detectors: configuration
of the body parts used in our
approach, with the canonical
size in pixels and in number
of cells. Detected orientations
angles are−30◦,−20◦,−10◦,
0◦, 10◦, 20◦, 30◦.

Parts Size (pixels) Size (cells) Codenames

Torso 43×31 7×5

To

Sh

He

LA RA

LF RF

LT RT

LL RL

Shoulders 13×31 2×5
Head 25×19 4×3
2×Arms 25×13 4×2
2×Forearms 25×13 4×2
2×Thighs 37×13 6×2
2×Legs 27×13 6×2

cluding the neighbors of k that belong to the same segment. The resulting Gaussian
distribution is thus more robust to noise.

In the lead up to the second step of the iteration, these Gaussian models are
used to evaluate the original images, scoring each location for similarity, providing
thus evidence maps p(ep|lp). This process can be efficiently performed using FFT-
based Gaussian convolutions. Then, these maps must be combined with the part
detections to feed the PS algorithm. Differently from [9], we experimented with
different ways to combine them. It is our experience that maps that are too sparse
and poorly populated generate pose estimations that rely on the default configuration
in the kinematic prior. A fusion rule based on multiplication of probabilities (the
default approach in a Bayesian update setting) tends to reduce the maps to isolated
peaks. We thus propose a fusion rule based on the probability rule for union, which
provides richer, but still selective, maps:

p(fp|lp) = p(dp|lp)+ p(ep|lp)− p(dp|lp)p(ep|lp), (11)

where the resulting p(fp|lp) is then used in place of p(dp|lp) in the pose estimation
algorithm of Subsec. 4.2. Experimentally, CPS converges after 4-5 iterations, and
we can finally extract signatures like in the single-shot case. As for the matching,
when we compare M probe signatures of a given subject against N gallery signatures
of another one, we simply calculate all the possible M×N single-shot distances, and
keep the smallest one.

5 Training
Training was performed on the PARSE1, the PASCAL VOC2010[13], and the IN-
RIA Person2 databases. PARSE consists of 305 images of people in various poses
that can be mirrored to generate 610 training images. The database also provides
labels for each image, in the form of locating 14 body points of interest. From these
points it is possible to retrieve configurations of body parts to train the PS models,
and our setup is described in Table 1. PASCAL and INRIA are used to generate
negative cases: PASCAL has 17125 images containing all sorts of objects, includ-
ing human figures of different sizes; INRIA Person has a negative training set of
1218 non-person images. In particular, as in [25], all the images in PASCAL were
used to extract the background model for the HOG-LDA detectors, while the first

1 http://phoenix.ics.uci.edu/software/pose/
2 http://pascal.inrialpes.fr/data/human/

http://phoenix.ics.uci.edu/software/pose/
http://pascal.inrialpes.fr/data/human/
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Fig. 8: Results of single-shot experiments on VIPeR (left) and iLIDS (right). Also
shown on the puppets are the corresponding part weights: note how the legs in iLIDS
are utterly useless because of too many occlusions by bags and trolleys.

200 annotated images in PARSE (mirrored to 400) were used to compute the fore-
ground models for the parts. The remaining 105 images (mirrored to 210) and parts
randomly drawn from INRIA Person’s negative set were used to train the Platt cali-
bration parameters. The PS kinematic model was trained on PARSE.

6 Experimental Results
In this section we present the experimental evaluation of our approach and we com-
pare our results to those at the state of the art. The main performance report tool
for re-identification is the Cumulative Matching Characteristic (CMC) curve, which
plots the cumulative expectation of finding the correct match in the first n matches.
Higher curves represent better performances, and hence it is also possible to com-
pare results at-a-glance by computing the normalized area under curve (nAUC)
value, indicated on the graphs within parentheses after the name when available.
What follows is a detailed explanation of the experiments we performed on these
datasets: VIPeR, iLIDS, ETHZ, CAVIAR for re-id.

Experimental Setup: The HOG-LDA detectors scan images once every 4 pixels
and interpolate the results in between. The PS algorithm discards torso, head, shoul-
ders detections below 50, 40, 30 percent of the image height, respectively. Only one
scale is evaluated in each dataset since the images are normalized. The calibration
parameters γ , β , wG, and the part weights {λp} are tuned by cross-validation on a
portion of each dataset, before performing the test runs.

VIPeR Dataset [22]: This dataset contains 632 pedestrian image pairs taken from
arbitrary viewpoints under varying illumination conditions. Each image is 128×48
pixels and presents a centered unoccluded human figure, although cropped short at
the feet in some side views. In the literature, results on VIPeR are typically produced
by mediating over ten runs, each consisting in a partition of randomly selected 316
image pairs. Our approach handily outperforms our previous result (BMVC in the
figures), as well as SDALF [14], PRSVM [29], and ELF [22], setting the rank-1



16 Dong Seon Cheng and Marco Cristani

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

Rank score

R
ec

og
ni

tio
n 

pe
rc

en
ta

ge

 

 

Full
MSCR
Color histogram
Torso only
Shoulders only

100

47

47

10 10

13 13

40 40

30 30

iLIDS M=3
0 5 10 15 20 25

40

50

60

70

80

90

Rank score

R
ec

og
ni

tio
n 

pe
rc

en
ta

ge

 

 

our M=3 (93.65)
BMVC M=3 (93.52)
our M=2 (92.93)
SDALF* M=3 (93.14)
BMVC M=2 (92.62)
MRCG M=2

100

72

40

3 3

30 30

9 9

23 23

iLIDS M=2

Fig. 9: (Left) Breakdown of our iLIDS multi-shot experiment showing the perfor-
mance of the full distance, only the MSCR, only the color histograms, separately
for the torso and shoulders parts (the shaded region contains the other parts curves).
(Right) Comparison with the state of the art for multi-shot on iLIDS.

matching rate at 26%, and exceeding 61% at rank-10 (see Fig. 8 (left)). We note
that weights for arms are very low, due to the fact that pose estimation is unable to
correctly account for self-occlusions in side views, which abound in this dataset.

iLIDS Dataset: The iLIDS MCTS videos have been captured at a busy airport
arrival hall [40]: the dataset consists of 119 pedestrians with 479 images that we
normalize to 64×192 pixels. The images come from non-overlapping cameras, sub-
ject to quite large illumination changes and occlusions. On average, each individual
has 4 images, with some ones having only 2. In the single-shot case, we reproduce
the same experimental settings of [40, 14]: we randomly select one image for each
pedestrian to build the gallery set, while all the remaining images (360) are used
as probes. This is repeated 10 times, and the average CMC is displayed in Fig. 8
(right): we outperform all methods except for PRSVM [29], where the comparison
is slightly unfair due to a completely different validation setup (learning-based). We
do well compared to a covariance-based technique (SCR) [4] and the Context-based
strategy of [40], which is also learning-based.

As for the multi-shot case, we follow a multi-vs-multi matching policy intro-
duced in [14], where both probe and gallery sets have groups of M images per indi-
vidual. We obtain our best result with M = 3, shown in Fig. 9 (left): the full distance
combines individually good performances of the MSCR and color histogram dis-
tances detailed in Subsec. 4.5; also of note is that torso and shoulders are far more
reliable than the other parts, even though, the high importance given to thighs and
legs (see puppet) indicates a good support role in difficult matches.

In Fig. 9 (right), we compare our multi-shot results with SDALF∗ (obtained in
the multi-vs-single modality M = 3, where galleries had three signatures and probes
had a single one), mean Riemannian covariance grids (MRCG) [5]. We outperform
all other results when we use M = 3 images, and we do resonably well even with
M = 2. Although the parts weights do not give a definitive picture, it is suggestive to
see worthless extremities in the single-shot experiment getting higher in the multi-
shot M = 2 case, and finally becoming quite helpful in the M = 3 case.
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Fig. 10: Results of multi-shot experiments on the ETHZ sequnces.

ETHZ Dataset: Three video sequences have been captured with moving cameras
at head height, originally intended for pedestrian detection. In [34], samples have
been taken for re-id3, generating three variable size image sets with 83 (4.857 im-
ages), 35 (1.936 images) and 28 (1.762 images) pedestrians, respectively. All im-
ages have been resized to 32× 96 pixels. The challenging aspects of ETHZ are
illumination changes and occlusions, and while the moving camera provides a good
range of variations in people’s appearances, the poses are rather few. Nevertheless,
our approach is very close to obtaining perfect scores with M = 5. See Fig. 10 for
a comparison with MCRG, SDALF and HPE. Note how the part weights behave
rather strangely in ETHZ3: since the part weights are tuned on a particular tuning
subset of the dataset, if this happens to give perfect re-id on a wide range of val-
ues for the parameters, then it is highly likely that they turn up some unreasonable
values. In fact, checking the breakdown of the performances, it is apparent that the
torso alone is able to re-id at 99.85%.

CAVIAR for re-id Dataset: CAVIAR4REID4 has been introduced in [9] to pro-
vide a challenging real-world setup. The images have been cropped from CAVIAR
video frames recorded by two different cameras in an indoor shopping center in Lis-
bon. Of the 72 different individuals identified (with images varying from 17×39 to
72×144), 50 are captured by both views and 22 from only one camera. In our ex-
periments, we reproduce the original setup: focusing only on the 50 double-camera
subjects, we select M images from the first camera for the probe set and M im-
ages from the second camera as the gallery set, and then perform multi-shot re-id
(called Camera-based multi-vs-multi, or CMvsM in short). All images are resized
to 32× 96 pixels. Both in single-shot and multi-shot, we outperform our previous
results, SDALF (see Fig. 11) and AHPE [8]. The part weights also suggest relatively
poor conditions, mainly due to the low resolution.

Computation Time: All experiments were run on a machine with one CPU (2.93
Ghz, 8 cores) and 8GB of RAM. The implentation was done in MATLAB (except
for the MSCR algorithm), using the facilities of the Parallel Computing toolbox to
take advantage of the multicore architecture. To establish a baseline, experiments on

3 http://www.umiacs.umd.edu/˜schwartz/datasets.html
4 Available at http://www.re-identification.net/

http://www.umiacs.umd.edu/~schwartz/datasets.html
http://www.re-identification.net/
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Fig. 11: Results of multi-shot experiments on CAVIAR4REID.

the VIPeR dataset with our approach initially require for each of the 1264 images:
part detection to extract probability maps of size 128×48×Nr×Np (Nr = 7 num-
ber of orientation angles, Np = 11 number of parts), pose estimation, and feature
extraction. Then, we calculate distances between all probes and galleries to produce
a 632× 632 matrix, and compute the matching and associated CMC curves for 10
trial runs of randomly chosen 316 subjects. The time taken by the last step is negli-
gible since it is simply a matter of selecting and sorting distances, and can be safely
ignored in this report.

We took the publicly available C++ source code of [1] and compiled it under
Windows (after suitable adjustments), to compare against our approach: its part de-
tection with SHAPE descriptors and AdaBoost is faster than our pure MATLAB
code, while the pose estimation is slower because it provides full marginal posteriors
(useful in other contexts than re-id) against our MAP estimates. We also report the
speed of our approach when activating 8 parallel workers in MATLAB, noting that
the C++ implementation can also run parallel processes. The time taken by distance
calculations heavily depends on the distance being used: Bhattacharyya, Hellinger
and L2 can be fully vectorized and take less than 1 s, χ2 and L1 are slower, and
distances like Earth Mover Distance are basically inpractical.

Running the full experiment on VIPeR takes approximately 30 minutes in single-
thread mode, and 12 minutes using 8 parallel workers (see Table 2). Training the
background model for the HOG-LDA detectors takes approximately 3 hours but
it is done once for all detectors (even future ones for different parts or objects, as
detailed in [25]), and negligible time for the foreground models. The kinematic prior
estimation is also practically istantaneous.

7 Conclusions
When we approach the problem of person re-identification from a human point of
view, it is reasonable to exploit our prior knowledge about person appearances: that
they are decomposable into articulated parts, and that matching can be carried out
per parts as well as on wholes. Thus, we proposed a framework for estimating the
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Procedure Input Output Time taken

Part detection [1] VIPeR images
(128×48 pixels)

1264 maps
(128×48×7×11 mats)

12.5 min
Part detection (single) 20.5 min
Part detection (8 parallel) 4.4 min

Pose estimation [1]
VIPeR maps 1264 masks

(128×48×11 bin images)

6.8 min
Pose estimation (single) 4 min
Pose estimation (8 parallel) 2 min

GC extraction VIPeR images+masks 1264 hists (210×11 mats) 11-13 sec
MSCR extraction VIPeR images+masks 1264 blobs lists 30 sec
MSCR dist. calculation VIPeR blobs 632×632 mat 3.5-5 min

Table 2: Comparison of computation times for several procedures.

local configuration of body parts using Pictorial Structures, introducing novel part
detectors that are easy and fast to train and to apply.

In our methodology and experimentation, we strived to devise discriminating
and robust signatures for re-id. We currently settled on color histograms and MSCR
features because of their speed and accuracy, but the overall framework is not de-
pendant on them, and could be further enhanced. In fact, we plan to publicly release
the source code of our system as an incentive for more comparative discussions.
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