Skip to main content

Fingerprint Anti-spoofing in Biometric Systems

  • Chapter
  • First Online:

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

This chapter is focused on giving a comprehensive description of the state-of-the-art in biometric-based fingerprint anti-spoofing and the big advances that have been reached in this field over the last decade. In addition, after a comprehensive review of the available literature in the field, we explore the potential of quality assessment as a way to enhance the security of the fingerprint-based technology against direct attacks. We believe that, beyond the interest that the described techniques intrinsically have, the case study presented may serve as an example of how to develop and validate fingerprint anti-spoofing techniques based on common and publicly available benchmarks and following a systematic and replicable protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Figures do not lie, but liars do figure.

  2. 2.

    During the writing of this chapter the 2013 LivDet edition was being held. The DB used in the evaluation will be made public on the web site of the competition once the final results are published.

  3. 3.

    http://prag.diee.unica.it/LivDet09/.

  4. 4.

    http://people.clarkson.edu/projects/biosal/fingerprint/index.php.

  5. 5.

    http://atvs.ii.uam.es/.

References

  1. van der Putte T, Keuning J (2000) Biometrical fingerprint recognition: don’t get your fingers burned. In: Proceedings of IFIP conference on smart card research and advanced applications, pp 289–303

    Google Scholar 

  2. Matsumoto T, Matsumoto H, Yamada K, Hoshino S (2002) Impact of artificial gummy fingers on fingerprint systems. In: Proceedings of SPIE optical security and counterfeit deterrence techniques IV, vol 4677, pp 275–289

    Google Scholar 

  3. Thalheim L, Krissler J (2002) Body check: biometric access protection devices and their programs put to the test. c’t magazine, pp 114–121

    Google Scholar 

  4. Derakhshani R, Schuckers S, Hornak L, O’Gorman L (2003) Determination of vitality from non-invasive biomedical measurement for use in fingerprint scanners. Pattern Recogn 36: 383–396

    Google Scholar 

  5. Antonelli A, Capelli R, Maio D, Maltoni D (2006) Fake finger detection by skin distortion analysis. IEEE Trans Inf Forensics Secur 1:360–373

    Article  Google Scholar 

  6. Galbally J, Alonso-Fernandez F, Fierrez J, Ortega-Garcia J (2012) A high performance fingerprint liveness detection method based on quality related features. Future Gener Comput Syst 28:311–321

    Article  Google Scholar 

  7. Franco A, Maltoni D (2008) Advances in biometrics: sensors, algorithms and systems, chap. fingerprint synthesis and spoof detection. Springer, London, pp 385–406

    Book  Google Scholar 

  8. Li SZ (ed) (2009) Encyclopedia of biometrics. Springer, Berlin

    Google Scholar 

  9. Coli P (2008) Vitality detection in personal authentication systems using fingerprints. Ph.D. thesis, Universita di Cagliari

    Google Scholar 

  10. Sandstrom M (2004) Liveness detection in fingerprint recognition systems. Master’s thesis, Linkoping University

    Google Scholar 

  11. Lane M, Lordan L (2005) Practical techniques for defeating biometric devices. Master’s thesis, Dublin City University

    Google Scholar 

  12. Blomme J (2003) Evaluation of biometric security systems against artificial fingers. Master’s thesis, Linkoping University

    Google Scholar 

  13. Lapsley P, Less J, Pare D, Hoffman N (1998) Anti-fraud biometric sensor that accurately detects blood flow , SmartTouch, LLC, US Patent #5,737,439

    Google Scholar 

  14. Setlak DR (1999) Fingerprint sensor having spoof reduction features and related methods, US Patent #5,953,441

    Google Scholar 

  15. Kallo I, Kiss A, Podmaniczky JT (2001) Detector for recognizing the living character of a finger in a fingerprint recognizing apparatus, Dermo Corporation, Ltd. U.S. Patent #6,175,64, Jan 16 2001

    Google Scholar 

  16. Diaz-Santana E, Parziale G (2006) Liveness detection method. Patent pending. EP06013258, 6

    Google Scholar 

  17. Kim J, Choi H, Lee W (2011) Spoof detection method for touchless fingerprint acquisition apparatus, Korea Patent, 0484664

    Google Scholar 

  18. Centro Criptologico Nacional (CCN) (2011) Characterizing attacks to fingerprint verification mechanisms CAFVM v3.0. Common Criteria Portal

    Google Scholar 

  19. Bundesamt fur Sicherheit in der Informationstechnik (BSI) (2008) Fingerprint spoof detection protection profile FSDPP v1.8. Common Criteria Portal

    Google Scholar 

  20. Marcialis GL, Lewicke A, Tan B, Coli P, Grimberg D, Congiu A, Tidu A, Roli F, Schuckers S (2009) First international fingerprint liveness detection competition—livdet 2009. In: Proceedings of IAPR international conference on image analysis and processing (ICIAP), LNCS, vol 5716. pp 12–23

    Google Scholar 

  21. Yambay D, Ghiani L, Denti P, Marcialis GL, Roli F, Schuckers S (2012) LivDet2011—fingerprint liveness detection competition 2011. In: 5th International Conference Biometrics (ICB)

    Google Scholar 

  22. Galbally J, Fierrez J, Alonso-Fernandez F, Martinez-Diaz M (2011) Evaluation of direct attacks to fingerprint verification systems. J Telecommun Syst, Spec Issue Biometrics Syst Appl 47:243–254

    Article  Google Scholar 

  23. Abhyankar A, Schuckers S (2009) Integrating a wavelet based perspiration liveness check with fingerprint recognition. Pattern Recogn 42:452–464

    Article  MATH  Google Scholar 

  24. Biometrics Institute (2011) Biometric Vulnerability Assessment Expert Group. http://www.biometricsinstitute.org/pages/biometric-vulnerability-assessment-expert-group-bvaeg.html

  25. NPL (2010) National Physical Laboratory: biometrics. http://www.npl.co.uk/biometrics

  26. CESG (2001) Communications-Electronics Security Group—Biometric Working Group (BWG). https://www.cesg.gov.uk/policyguidance/biometrics/Pages/index.aspx

  27. BEAT (2012) BEAT: biometrices evaluation and testing. http://www.beat-eu.org/

  28. Tabula Rasa (2010) Trusted biometrics under spoofing attacks (tabula rasa). (http://www.tabularasa-euproject.org/)

  29. Maltoni D, Maio D, Jain A, Prabhakar S (2009) Handbook of fingerprint recognition. Springer, London

    Book  Google Scholar 

  30. Cappelli R, Maio D, Lumini A, Maltoni D (2007) Fingerprint image reconstruction from standard templates. IEEE Trans Pattern Anal Mach Intell 29:1489–1503

    Article  Google Scholar 

  31. Ross A, Shah J, Jain AK (2007) From template to image: reconstructing fingerprints from minutiae points. IEEE Trans Pattern Anal Mach Intell 29:544–560

    Article  Google Scholar 

  32. Cappelli R (2009) Handbook of fingerprint recognition, chap. synthetic fingerprint generation. Springer, London, pp 270–302

    Google Scholar 

  33. Fen J, Jain A (2011) Fingerprint reconstruction: from minutiae to phase. IEEE Trans Pattern Anal Mach Intell 33:209–223

    Article  Google Scholar 

  34. Wehde A, Beffel JN (1924) Fingerprints can be forged. Tremonia Publish Co, Chicago

    Google Scholar 

  35. de Water MV (1936) Can fingerprints be forged? Sci News Lett 29:90–92

    Article  Google Scholar 

  36. Sengottuvelan P, Wahi A (2007) Analysis of living and dead finger impressions identification for biometric applications. In: Proceedings of international conference on computational intelligence and multimedia applications

    Google Scholar 

  37. Yoon S, Feng J, Jain AK (2012) Altered fingerprints: analysis and detection. IEEE Trans Pattern Anal Mach Intell 34:451–464

    Article  Google Scholar 

  38. Willis D, Lee M (1998) Biometrics under our thumb. Network computing. Available on line at http://www.networkcomputing.com/

  39. Sten A, Kaseva A, Virtanen T (2003) Fooling fingerprint scanners—biometric vulnerabilities of the precise biometrics 100 SC scanner. In: Proceedings of australian information warfare and it security conference

    Google Scholar 

  40. Wiehe A, Søndrol T, Olsen OK, Skarderud F (2004) Attacking fingerprint sensors. Gjøvik University College, 200

    Google Scholar 

  41. Galbally J, Cappelli R, Lumini A, de Rivera GG, Maltoni D, Fierrez J, Ortega-Garcia J, Maio D (2010) An evaluation of direct and indirect attacks using fake fingers generated from ISO templates. Pattern Recogn Lett 31:725–732 (To appear)

    Google Scholar 

  42. Barral C, Tria A (2009) Fake fingers in fingerprint recognition: glycerin supersedes gelatin. Formal to practical security, LNCS, vol 5458. Springer, Berlin, pp 57–69

    Google Scholar 

  43. Parthasaradhi S, Derakhshani R, Hornak L, Schuckers S (2005) Time-series detection of perspiration as a liveness test in fingerprint devices. IEEE Trans Syst Man Cybern Part C Appl Rev 35:335–343

    Article  Google Scholar 

  44. Schuckers S, Abhyankar A (2004) A wavelet based approach to detecting liveness in fingerprint scanners. In: Proceedings of biometric authentication workshop (BioAW), LNCS, vol 5404. Springer, pp 278–386

    Google Scholar 

  45. Tan B, Schuckers S (2006) Comparison of ridge- and intensity-based perspiration liveness detection methods in fingerprint scanners. In: Proceedings of the SPIE biometric technology for human identification III (BTHI III), vol 6202, pp 62020A

    Google Scholar 

  46. Tan B, Schuckers S (2008) A new approach for liveness detection in fingerprint scanners based on valley noise analysis. J Electron Imaging 17:011009-1–011009-9

    Article  Google Scholar 

  47. DeCann B, Tan B, Schuckers S (2009) A novel region based liveness detection approach for fingerprint scanners. In: Proceedings of IAPR/IEEE international conference on biometrices, LNCS, vol 5558. Springer, pp 627–636

    Google Scholar 

  48. NexIDBiometrics (2012). http://nexidbiometrics.com/

  49. Abhyankar A, Schuckers S (2006) Fingerprint liveness detection using local ridge frequencies and multiresolution texture analysis techniques. In: Proceedings of IEEE international conference on image processing (ICIP)

    Google Scholar 

  50. Marasco E, Sansone C (2010) An anti-spoofing technique using multiple textural features in fingerprint scanners. In: Proceedings of IEEE workshop on biometric measurements and systems for security and medical applications (BIOMS), pp 8–14

    Google Scholar 

  51. Marasco E, Sansone C (2012) Combining perspiration- and morphology-based static features for fingerprint liveness detection. Pattern Recogn Lett 33:1148–1156

    Article  Google Scholar 

  52. Cappelli R, Maio D, Maltoni D (2001) Modelling plastic distortion in fingerprint images. In: Proceedings of international conference on pattern recognition (ICAPR), LNCS, vol 2013. Springer, pp 369–376

    Google Scholar 

  53. Bazen AM, Gerez SH (2003) Fingerprint matching by thin-plate spline modelling of elastic deformations. Pattern Recogn 36:1859–1867

    Article  Google Scholar 

  54. Chen Y, Dass S, Ross A, Jain AK (2005) Fingerprint deformation models using minutiae locations and orientations. In: Proceedings of IEEE workshop on applications of computer vision (WACV), pp 150–156

    Google Scholar 

  55. Chen Y, Jain AK (2005) Fingerprint deformation for spoof detection. In: Proceedings of IEEE biometric symposium (BSym), pp 19–21

    Google Scholar 

  56. Zhang Y, Tian J, Chen X, Yang X, Shi P (2007) Fake finger detection based on thin-plate spline distortion model. In: Proceedings of IAPR international conference on biometrics, LNCS, vol 4642. Springer, pp 742–749

    Google Scholar 

  57. Yau WY, Tran HT, Teoh EK, Wang JG (2007) Fake finger detection by finger color change analysis. In: Proceedings of international conference on biometrics (ICB), LNCS, vol 4642. Springer, pp 888–896

    Google Scholar 

  58. Jia J, Cai L (2007) Fake finger detection based on time-series fingerprint image analysis. In: Proceedings of IEEE international conference on intelligent computing (ICIC), LNCS, vol 4681. Springer, pp 1140–1150

    Google Scholar 

  59. Uchida K (2004) Image-based approach to fingerprint acceptability assessment. In: Proceedings of interenational conference on biometric authentication, LNCS, vol 3072. Springer, pp 194–300

    Google Scholar 

  60. Marcialis GL, Roli F, Tidu A (2010) Analysis of fingerprint pores for vitality detection. In: Proceedings of IEEE international conference on pattern recognition (ICPR), pp 1289–1292

    Google Scholar 

  61. Memon S, Manivannan N, Balachandran W (2011) Active pore detection for liveness in fingerprint identification system. In: Proceedings of IEEE telecommunications forum (TelFor), pp 619–622

    Google Scholar 

  62. Martinsen OG, Clausen S, Nysather JB, Grimmes S (2007) Utilizing characteristic electrical properties of the epidermal skin layers to detect fake fingers in biometric fingerprint systems-a pilot study. IEEE Trans Biomed Eng 54:891–894

    Article  Google Scholar 

  63. Moon YS, Chen JS, Chan KC, So K, Woo KC (2005) Wavelet based fingerprint liveness detection. Electron Lett 41(20):1112–1113

    Article  Google Scholar 

  64. Nikam SB, Agarwal S (2009) Feature fusion using Gabor filters and cooccrrence probabilities for fingerprint antispoofing. Int J Intell Syst Technol Appl 7:296–315

    Google Scholar 

  65. Nikam SB, Argawal S (2009) Ridgelet-based fake fingerprint detection. Neurocomputing 72:2491–2506

    Article  Google Scholar 

  66. Nikam S, Argawal S (2010) Curvelet-based fingerprint anti-spoofing. SIViP 4:75–87

    Article  Google Scholar 

  67. Coli P, Marcialis GL, Roli F (2007) Power spectrum-based fingerprint vitality detection. In: Proceedings of IEEE workshop on automatic identification advanced technologies (AutoID), pp 169–173

    Google Scholar 

  68. Jin C, Kim H, Elliott S (2007) Liveness detection of fingerprint based on band-selective Fourier spectrum. In: Proceedings of international conference on information security and cryptology (ICISC), LNCS, vol 4817. Springer, pp 168–179

    Google Scholar 

  69. Jin S, Bae Y, Maeng H, Lee H (2010) Fake fingerprint detection based on image analysis. In: Proceedings of SPIE 7536, sensors, cameras, and systems for industrial/scientific applications XI, pp 75360C

    Google Scholar 

  70. Lee H, Maeng H, Bae Y (2009) Fake finger detection using the fractional Fourier transform. In: Proceedings of biometric ID management and multimodal communication (BioID), LNCS, vol 5707. Springer, pp 318–324

    Google Scholar 

  71. Marcialis GL, Coli P, Roli F (2012) Fingerprint liveness detection based on fake finger characteristics. Int J Digit Crime Forensics 4(3):1–19

    Article  Google Scholar 

  72. Coli P, Marcialis GL, Roli F (2007) Vitality detection from fingerprint images: A critical survey. In: Proceedings of international conference on biometrics (ICB), LNCS, vol 4642. Springer, pp. 722–731

    Google Scholar 

  73. Coli P, Marcialis GL (2008) Fingerprint silicon replicas: static and dynamic features for vitality detection using an optical capture device. Int J Image Graph 8(4):495–512

    Article  Google Scholar 

  74. Marcialis GL, Coli P, Roli F (2012) Fingerprint liveness detection based on fake finger characteristics. Int J Digit Crime Forensics 4:1–19

    Article  Google Scholar 

  75. Choi H, Kang R, Choi K, Jin ATB, Kim J (2009) Fake-fingerprint detection using multiple static features. Opt Eng 48:047202-1–047202-13

    Google Scholar 

  76. Nixon KA, Rowe RK (2005) Multispectral fingerprint imaging for spoof detection. In: Proceedings of SPIE 5779, biometric technology for human identification II (BTHI), pp 214–225

    Google Scholar 

  77. Rowe RK, Nixon KA, Butler PW (2008) Multispectral fingerprint image acquisition. In: Ratha NK, Govindaraju V (eds) Advances in biometrics: sensors, algorithms and systems, Springer, London, pp 3–23

    Google Scholar 

  78. Yau WY, Tran HL, Teoh EK (2008) Fake finger detection using an electrotactile display system. In: Proceedings of international conference on control, automation, robotics and vision (ICARCV), pp 17–20

    Google Scholar 

  79. Reddy PV, Kumar A, Rahman SM, Mundra TS (2008) A new antispoofing approach for biometric devices. IEEE Trans Biomed Circuits Syst 2:328–337

    Article  Google Scholar 

  80. Baldiserra D, Franco A, Maio D, Maltoni D (2006) Fake fingerprint detection by odor analysis. In: Proceedings of IAPR international conference on biometrics (ICB), LNCS, vol 3832. Springer, pp 265–272

    Google Scholar 

  81. Cheng Y, Larin KV (2006) Artificial fingerprint recognition using optical coherence tomography with autocorrelation analysis. Appl Opt 45:9238–9245

    Article  Google Scholar 

  82. Manapuram RK, Ghosn M, Larin KV (2006) Identification of artificial fingerprints using optical coherence tomography technique. Asian J Phys 15:15–27

    Google Scholar 

  83. Cheng Y, Larin KV (2007) In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography. IEEE Photonics Technol Lett 19:1634–1636

    Article  Google Scholar 

  84. Larin KV, Cheng Y (2008) Three-dimensional imaging of artificial fingerprint by optical coherence tomography. In: Proceedings of SPIE biometric technology for human identification (BTHI), vol 6944. pp 69440M

    Google Scholar 

  85. Chang S, Larin KV, Mao Y, Almuhtadi W, Flueraru C (2011) Fingerprint Spoof Detection Using Near Infrared Optical Analysis. In: Yang J, Nanni L (eds) State of the art in biometrics. Intechopen, Croatia, pp 57–84

    Google Scholar 

  86. Nasiri-Avanaki MR, Meadway A, Bradu A, Khoshki RM, Hojjatoleslami A, Podoleanu AG (2011) Anti-spoof reliable biometry of fingerprints using en-face optical coherence tomography. Opt Photonics J 1:91–96

    Article  Google Scholar 

  87. Hariri M, Shokouhi SB (2011) Possibility of spoof attack against robustness of multibiometric authentication systems. SPIE J Opt Eng 50:079001

    Article  Google Scholar 

  88. Akhtar Z, Fumera G, Marcialis GL, Roli F (2011) Robustness analysis of likelihood ratio score fusion rule for multi-modal biometric systems under spoof attacks. In: Proceedings of IEEE international carnahan conference on security technology (ICSST), pp 237–244

    Google Scholar 

  89. Marasco E, Johnson P, Sansone C, Schuckers S (2011) Increase the security of multibiometric systems by incorporating a spoofing detection algorithm in the fusion mechanism. In: Proceedings of multiple classifier systems (MCS), LNCS, vol 6713. Springer, pp 309–318

    Google Scholar 

  90. Marasco E, Ding Y, Ross A (2012) Combining match scores with liveness values in a fingerprint verification system. In: Proceedings of IEEE international conference on biometrics: theory, applications and systems (BTAS), pp 418–425

    Google Scholar 

  91. Rattani A, Poh N, Ross A (2012) Analysis of user-specific score characteristics for spoof biometric attacks. In: Proceedings of IEEE computer society workshop on biometrics at the international conference on computer vision and pattern recognition (CVPR), pp 124–129

    Google Scholar 

  92. Akhtar Z, Fumera G, Marcialis GL, Roli F (2012) Evaluation of serial and parallel multibiometric systems under spoofing attacks. In: Proceedings of international conference on biometrics: theory, applications and systems (BTAS), pp 402–407

    Google Scholar 

  93. Ultra-Scan (2012). http://www.ultra-scan.com/

  94. Optel (2012). http://www.optel.pl/

  95. PosID (2012). http://www.posid.co.uk/

  96. VirdiTech (2012). http://www.virditech.com/

  97. Kang H, Lee B, Kim H, Shin D, Kim J (2003) A study on performance evaluation of the liveness detection for various fingerprint sensor modules. In: Proceedings of international conference on knowledge-based intelligent information and engineering systems (KES), LNAI, vol 2774. Springer, pp 1245–1253

    Google Scholar 

  98. Wang L, El-Maksoud RA, Sasian JM, William Kuhn P, Gee K (2009) V.S.V.: A novel contactless aliveness-testing fingerprint sensor. In: Proceedings of SPIE novel optical systems design and optimization XII, vol 7429. p. 742915

    Google Scholar 

  99. Bayram S, Avcibas I, Sankur B, Memon N (2006) Image manipulation detection. J Electron Imagingq 15(041):102

    Google Scholar 

  100. Stamm MC, Liu KJR (2010) Forensic detection of image manipulation using statistical intrinsic fingerprints. IEEE Trans Inf Forensics Secur 5:492–496

    Article  Google Scholar 

  101. Avcibas I, Memon N, Sankur B (2003) Steganalysis using image quality metrics. IEEE Trans Image Process 12:221–229

    Article  MathSciNet  Google Scholar 

  102. Avcibas I, Kharrazi M, Memon N, Sankur B (2005) Image steganalysis with binary similarity measures. EURASIP J Appl Sig Process 1:2749–2757

    Article  Google Scholar 

  103. Lyu S, Farid H (2006) Steganalysis using higher-order image statistics. IEEE Trans Inf Forensics Secur 1:111–119

    Article  Google Scholar 

  104. Lim E, Jiang X, Yau W (2002) Fingerprint quality and validity analysis. In: Proceedings of IEEE international conference on image processing (ICIP), vol 1. pp 469–472

    Google Scholar 

  105. Chen Y, Dass S, Jain A (2005) Fingerprint quality indices for predicting authentication performance. In: Proceedings of IAPR audio- and video-based biometric person authentication (AVBPA), LNCS, vol 3546. Springer, pp 160–170

    Google Scholar 

  106. Chen T, Jiang X, Yau W (2004) Fingerprint image quality analysis. In: Proceedings of IEEE international conference on image processing (ICIP), vol 2. pp 1253–1256

    Google Scholar 

  107. Hong L, Wan Y, Jain AK (1998) Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Pattern Anal Mach Intell 20(8):777–789

    Article  Google Scholar 

  108. Alonso-Fernandez F, Fierrez J, Ortega-Garcia J, Gonzalez-Rodriguez J, Fronthaler H, Kollreider K, Bigun J (2008) A comparative study of fingerprint image quality estimation methods. IEEE Trans Inf Forensics Secur 2(4):734–743

    Article  Google Scholar 

  109. Bigun J (2006) Vision with direction. Springer, Berlin

    Google Scholar 

  110. Shen L, Kot A, Koo W (2001) Quality measures of fingerprint images. In: Proceedings of IAPR audio- and video-based biometric person authentication (AVBPA), LNCS, vol 2091. Springer, pp 266–271

    Google Scholar 

  111. Wong PW, Pappas TN, Safranek RJ, Chen J, Wang Z, Bovik AC, Simoncelli EP, Sheikh HR (2005) Handbook of image and video processing, chap. Section VIII: image and video rendering and Assessment. Academic Press, Amsterdam, pp 925–989

    Book  Google Scholar 

  112. Sheikh HRS, Sabir MF, Bovik AC (2006) A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans Image Process 15:3440–3451

    Article  Google Scholar 

  113. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: A natural scene statatistics approach in the DCT domain. IEEE Trans Image Process 21:3339–3352

    Article  MathSciNet  Google Scholar 

  114. Avcibas I, Sankur B, Sayood K (2002) Statistical evaluation of image quality measures. J Electron Imaging 11:206–223

    Article  Google Scholar 

  115. Huynh-Thu Q, Ghanbari M (2008) Scope of validity of PSNR in image/video quality assessment. Electron Lett 44:800–801

    Article  Google Scholar 

  116. Yao S, Lin W, Ong E, Lu Z (2005) Contrast signal-to-noise ratio for image quality assessment. In: Proceedings of international conference on image processing (ICIP), pp 397–400

    Google Scholar 

  117. Eskicioglu AM, Fisher PS (1995) Image quality measures and their performance. IEEE Trans Commun 43:2959–2965

    Article  Google Scholar 

  118. Martini MG, Hewage CT, Villarini B (2012) Image quality assessment based on edge preservation. Sig Process: Image Commun 27:875–882

    Google Scholar 

  119. Nill NB, Bouzas B (1992) Objective image quality measure derived from digital image power spectra. Opt Eng 31:813–825

    Article  Google Scholar 

  120. Liu A, Lin W, Narwaria M (2012) Image quality assessment based on gradient similarity. IEEE Trans Image Process 21:1500–1511

    Article  MathSciNet  Google Scholar 

  121. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612

    Article  Google Scholar 

  122. LIVE: (2012). http://live.ece.utexas.edu/research/Quality/index.htm

  123. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15:430–444

    Article  Google Scholar 

  124. Soundararajan R, Bovik AC (2012) RRED indices: reduced reference entropic differencing for image quality assessment. IEEE Trans Image Process 21:517–526

    Article  MathSciNet  Google Scholar 

  125. Wang Z, Sheikh HR, Bovik AC (2002) No-reference perceptual quality assessment of JPEG compressed images. In: Proceedings of IEEE international conference on image processing (ICIP), pp 477–480

    Google Scholar 

  126. Zhu X, Milanfar P (2009) A no-reference sharpness metric sensitive to blur and noise. In: Proceedings of international workshop on quality of multimedia experience (QoMEx), pp 64–69

    Google Scholar 

  127. Moorthy AK, Bovik AC (2010) A two-step framework for constructing blind image quality indices. IEEE Sig Process Lett 17:513–516

    Article  Google Scholar 

  128. Mittal A, Soundararajan R, Bovik AC (2012) Making a completely blind image quality analyzer. IEEE Sig Process Lett. doi:10.1109/LSP.2012.2227726

  129. Wang Z, Bovik AC (2009) Mean squared error: love it or leave it? IEEE Sig Process Mag 26:98–117

    Article  Google Scholar 

  130. Teo PC, Heeger DJ (1994) Perceptual image distortion. In: Proceedings of international conference on image processing, pp 982–986

    Google Scholar 

  131. Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of alvey vision conference (AVC), pp 147–151

    Google Scholar 

  132. Brunet D, Vrscay ER, Wang Z (2012) On the mathematical properties of the structural similarity index. IEEE Trans Image Process 21:1488–1499

    Article  MathSciNet  Google Scholar 

  133. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, New York

    Book  MATH  Google Scholar 

  134. Nixon KA, Aimale V, Rowe RK (2008) Handbook of biometrics, chap. spoof detection schemes. Springer, New York, pp 403–423

    Book  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Shield (TEC2012-34881) from Spanish MECD, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Galbally .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Galbally, J., Fierrez, J., Ortega-Garcia, J., Cappelli, R. (2014). Fingerprint Anti-spoofing in Biometric Systems. In: Marcel, S., Nixon, M., Li, S. (eds) Handbook of Biometric Anti-Spoofing. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6524-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6524-8_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6523-1

  • Online ISBN: 978-1-4471-6524-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics