Skip to main content

Perception of Stiffness with Force Feedback Delay

  • Chapter
  • First Online:
Multisensory Softness

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

This book is focused on understanding how the human sensorimotor system integrates various sources of information to form a representation of stiffness—the linear relation between position and force. In this chapter, we will examine attempts to answer this question when users interact with artificially changed environment in which the force resulting from an interaction with the object is delayed, such as in the case of remote bilateral teleoperation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aglioti S, DeSouza JFX, Goodale MA (1995) Size-contrast illusions deceive the eye but not the hand. Curr Biol 5(6):679–685

    Article  Google Scholar 

  • Anvari M (2007) Remote telepresence surgery: the Canadian experience. Surg Endosc 21(4):537–541

    Article  Google Scholar 

  • Avraham G, Nisky I, Fernandes H, Acuna D, Kording K, Loeb G, Karniel A (2012) Towards perceiving robots as humans–three handshake models face the Turing-like handshake Test. IEEE Trans Haptics 5(3):196–207

    Article  Google Scholar 

  • Ballantyne GH (2002) Robotic surgery, telerobotic surgery, telepresence, and telementoring. Surg Endosc 16(10):1389–1402. doi:10.1007/s00464-001-8283-7

    Article  Google Scholar 

  • Bicchi A, Scilingo EP, Ricciardi E, Pietrini P (2008) Tactile flow explains haptic counterparts of common visual illusions. Brain Res Bull 75(6):737–741

    Article  Google Scholar 

  • Biggs J, Srinivasan MA (2002) Haptic interfaces. In: Stanney K (ed) Handbook of virtual environments. Lawrence Earlbaum Inc, London, pp 93–115

    Google Scholar 

  • Box GEP, Draper NR (1987) Empirical model-building and responce surfaces. Wiley, New Jersey

    Google Scholar 

  • Brayanov JB, Smith MA (2010) Bayesian and “Anti-Bayesian” biases in sensory integration for action and perception in the size-weight illusion. J Neurophysiol 103(3):1518–1531. doi:10.1152/jn.00814.2009

    Article  Google Scholar 

  • Brouwer B, Ashby P (1990) Corticospinal projections to upper and lower limb spinal motoneurons in man. Electroencephalogr Clin Neurophysiol 76(6):509–519

    Article  Google Scholar 

  • Brown J, Rosen J, Chang L, Sinanan M, Hannaford B (2004) Quantifying surgeon grasping mechanics in laparoscopy using the blue DRAGON system. Paper presented at the Medicine Meets Virtual Reality, Newport Beach, CA

    Google Scholar 

  • Carey DP (2001) Do action systems resist visual illusions? Trends Cogn Sci 5(3):109–113

    Article  Google Scholar 

  • Chib VS, Krutky MA, Lynch KM, Mussa-Ivaldi FA (2009) The separate neural control of hand movements and contact forces. J Neurosci 29(12):3939–3947

    Article  Google Scholar 

  • Chib VS, Patton JL, Lynch KM, Mussa-Ivaldi FA (2006) Haptic identification of surfaces as fields of force. J Neurophysiol 95(2):1068–1077

    Article  Google Scholar 

  • Colebatch JG, Gandevia SC (1989) The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain 112:749–763

    Article  Google Scholar 

  • Cooper JR, Wernke MM, Reed KB (2012) The effects of incongruent feedback on bimanual task performance. Paper presented at the Haptics symposium (HAPTICS), IEEE, 4–7 March 2012

    Google Scholar 

  • Davidson A, Buford J (2006) Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging. Exp Brain Res 173(1):25–39

    Article  Google Scholar 

  • De Gersem G, Van Brussel H, Tendick F (2005) Reliable and enhanced stiffness perception in soft-tissue telemanipulation. Int J Robot Res 24(10):805–822. doi:10.1177/0278364905057861

    Article  Google Scholar 

  • Di Luca M, Knorlein B, Ernst MO, Harders M (2011) Effects of visual-haptic asynchronies and loading-unloading movements on compliance perception. Brain Res Bull 85(5):245–259

    Article  Google Scholar 

  • Dijkerman HC, Vargha-Khadem F, Polkey CE, Weiskrantz L (2008) Ipsilesional and contralesional sensorimotor function after hemispherectomy: differences between distal and proximal function. Neuropsychologia 46(3):886–901

    Article  Google Scholar 

  • Domenico G, McCloskey DI (1987) Accuracy of voluntary movements at the thumb and elbow joints. Exp Brain Res 65(2):471–478

    Article  Google Scholar 

  • Duong MD, Terashima K, Miyoshi T, Okada T (2010) Rehabilitation system using teleoperation with force-feedback-based impedance adjustment and EMG-moment model for arm muscle strength assessment. J Rob Mechatron 22(1):10–20

    Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433

    Article  Google Scholar 

  • Fernandes HL, Kording KP (2010) In praise of “False” models and rich data. J Mot Behav 42(6): 343–349. doi:10.1080/00222895.2010.526462

  • Flanagan JR, Beltzner MA (2000) Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nat Neurosci 3(7):737–741

    Article  Google Scholar 

  • Ganel T, Goodale MA (2003) Visual control of action but not perception requires analytical processing of object shape. Nature 426(6967):664–667

    Article  Google Scholar 

  • Gentaz E, Hatwell Y (2004) Geometrical haptic illusions: the role of exploration in the Müller-Lyer, vertical-horizontal, and Delboeuf illusions. Psychon Bull Rev 11(1):31–40. doi:10.3758/bf03206457

    Article  Google Scholar 

  • Gillespie R, O’Modhrain M, Tang P, Zaretzky D, Pham C (1997) The virtual teacher. Paper presented at the ASME dynamic systems and control division, Anaheim, CA

    Google Scholar 

  • Goodale MA, Humphrey GK (1998) The objects of action and perception. Cognition 67(1–2): 181–207

    Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visoual pathways for perception and action. Trends Neurosci 15(1):20–25

    Article  Google Scholar 

  • Hall LA, McCloskey DI (1983) Detections of movements imposed on finger, elbow and shoulder joints. J Physiol 335(1):519–533

    Google Scholar 

  • Hamilton AF, Jones KE, Wolpert DM (2004) The scaling of motor noise with muscle strength and motor unit number in humans. Exp Brain Res 157(4):417–430

    Article  Google Scholar 

  • Han G, Choi S (2010) Extended rate-hardness: a measure for perceived hardness. In: Kappers AML, Van Erp JF, Bergmann Tiest WM, Van der Helm FCT (eds) Haptics: generating and perceiving tangible sensations, vol 6191. Springer, Berlin Heidelberg, pp 117–124

    Google Scholar 

  • Hirche S, Bauer A, Buss M (2005) Transparency of haptic telepresence systems with constant time delay. Paper presented at the proceedings of the 2005 IEEE conference on control applications, Toronto, Canada

    Google Scholar 

  • Hirche S, Buss M (2007) Human perceived transparency with time delay. Adv Telerobotics 191–209

    Google Scholar 

  • Hirzinger G, Brunner B, Dietrich J, Heindl J (1993) Sensor-based space robotics: ROTEX and its telerobotic features. IEEE Trans Robot Autom 9(5):649–663

    Article  Google Scholar 

  • Hogan N, Kay BA, Fasse ED, Mussa-Ivaldi FA (1990) Haptic illusions: experiments on human manipulation and perception of “Virtual Objects”. Cold spring Harbor symposia on quantitative biology 55:925–931. doi:10.1101/sqb.1990.055.01.086

    Article  Google Scholar 

  • Imaida T, Yokokohji Y, Doi T, Oda M, Yoshikawa T (2004) Ground-space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition. IEEE Trans Robot Autom 20(3):499–511

    Google Scholar 

  • Ishihara M, Negishi N (2008) Effect of feedback force delays on the operation of haptic displays. IEEJ Trans Electr Electron Eng 3(1):151–153

    Article  Google Scholar 

  • Kaim L, Drewing K (2008) Exploratory movement parameters vary with stimulus stiffness. In: Ferre M (ed) Lecture notes in computer science, vol 5024. Springer, Berlin / Heidelberg, pp 313–318

    Google Scholar 

  • Kandel E, Schwartz J, Jessel T (2000) Principles of neural science, 4th edn. McGraw-Hill

    Google Scholar 

  • Karniel A (2009) Computational motor control. In: Binder M, Hirokawa N, Windhorst U (eds) Encyclopedic reference of neuroscience. Springer, Berlin Heidelberg, pp 832–837

    Chapter  Google Scholar 

  • Karniel A (2011) Open questions in computational motor control. J Integr Neurosci 10:385–411

    Article  Google Scholar 

  • Karniel A, Nisky I, Avraham G, Peles B-C, Levy-Tzedek S (2010) A turing-like handshake test for motor intelligence. In: Kappers AML, Van Erp JF, Bergmann Tiest WM, Van der Helm FCT (eds) Haptics: generating and perceiving tangible sensations, vol 6191. Springer, Berlin/Heidelberg, pp 197–204

    Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  Google Scholar 

  • Kurata K, Tanji J (1986) Premotor cortex neurons in macaques: activity before distal and proximal forelimb movements. J Neurosci 6(2):403–411

    Google Scholar 

  • Lawrence DA, Pao LY, Dougherty AM, Salada MA, Pavlou Y (2000) Rate-hardness: a new performance metric for haptic interfaces. IEEE Trans Robot Autom 16(4):357–371

    Article  Google Scholar 

  • Lederman SJ, Jones LA (2011) Tactile and haptic illusions. IEEE Trans Haptics 4(4):273–294. doi:10.1109/toh.2011.2

    Article  Google Scholar 

  • Leib R, Nisky I, Karniel A (2010) Perception of stiffness during interaction with delay-like nonlinear force field. Paper presented at the EuroHaptics 2010, part 1, LCNS 6191, Amsterdam

    Google Scholar 

  • Lemon RN, Griffiths J (2005) Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle Nerve 32(3):261–279

    Article  Google Scholar 

  • Lu LH, Barrett AM, Cibula JE, Gilmore RL, Heilman KM (2000) Proprioception more impaired distally than proximally in subjects with hemispheric dysfunction. Neurology 55(4):596–597

    Article  Google Scholar 

  • Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M, Smith MK (2001) Transatlantic robot-assisted telesurgery. Nature 413(6854):379–380

    Article  Google Scholar 

  • McKiernan BJ, Marcario JK, Karrer JH, Cheney PD (1998) Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. J Neurophysiol 80(4):1961–1980

    Google Scholar 

  • Millman PA, Colgate JE (1995) Effects of nonuniform environment damping on haptic perception and performance of aimed movements. Paper presented at the ASME Dynamic Systems and Control Division

    Google Scholar 

  • Mugge W, Schuurmans J, Schouten AC, van der Helm FCT (2009) Sensory weighting of force and position feedback in human motor control tasks. J Neurosci 29(17):5476–5482

    Article  Google Scholar 

  • Nisky I (2011) Perceptuomotor transparency in bilateral teleoperation: the effect of delay on perception and action. Ph.D. thesis, Ben-Gurion University of the Negev, Beer-Sheva, Israel

    Google Scholar 

  • Nisky I, Baraduc P, Karniel A (2010) Proximodistal gradient in the perception of delayed stiffness. J Neurophysiol 103(6):3017–3026

    Article  Google Scholar 

  • Nisky I, Mussa-Ivaldi FA, Karniel A (2008a) Perceptuo-motor transparency in bilateral teleoperation. In: ASME conference proceedings, pp 449–456

    Google Scholar 

  • Nisky I, Mussa-Ivaldi FA, Karniel A (2008b) A regression and boundary-crossing-based model for the perception of delayed stiffness. IEEE Trans Haptics 1(2):73–82

    Article  Google Scholar 

  • Nisky I, Mussa-Ivaldi FA, Karniel A (2013) Analytical study of perceptual and motor transparency in bilateral teleoperation. IEEE Trans Hum Mach Syst 43(6):570–582

    Article  Google Scholar 

  • Nisky I, Pressman A, Pugh CM, Mussa-Ivaldi FA, Karniel A (2010) Perception and action in simulated telesurgery. Paper presented at the EuroHaptics 2010, Amsterdam, Netherlands

    Google Scholar 

  • Nisky I, Pressman A, Pugh CM, Mussa-Ivaldi FA, Karniel A (2011) Perception and action in teleoperated needle insertion. IEEE Trans Haptics 4(3):155–166

    Article  Google Scholar 

  • Ohnishi H, Mochizuki K (2007) Effect of delay of feedback force on perception of elastic force: a psychophysical approach. IEICE Trans Commun E-B 90(1):12–20

    Article  Google Scholar 

  • Okamoto S, Konyo M, Saga S, Tadokoro S (2009) Detectability and perceptual consequences of delayed feedback in a vibrotactile texture display. IEEE Trans Haptics 2(2):73–84. doi:10.1109/toh.2009.17

    Article  Google Scholar 

  • Palmer E, Ashby P (1992) Corticospinal projections to upper limb motoneurones in humans. J Physiol 448(1):397–412

    Google Scholar 

  • Pressman A, Karniel A, Mussa-Ivaldi FA (2011) How soft is that pillow? The perceptual localization of the hand and the haptic assessment of contact rigidity. J Neurosci 31(17):6595–6604. doi:10.1523/jneurosci.4656-10.2011

    Article  Google Scholar 

  • Pressman A, Nisky I, Karniel A, Mussa-Ivaldi FA (2008) Probing virtual boundaries and the perception of delayed stiffness. Adv Rob 22:119–140

    Article  Google Scholar 

  • Pressman A, Welty LJ, Karniel A, Mussa-Ivaldi FA (2007) Perception of delayed stiffness. Int J Robot Res 26(11–12):1191–1203

    Article  Google Scholar 

  • Raibert MH, Craig JJ (1981) Hybrid position/force control of manipulators. ASME J Dyn Syst Meas Contr 102(2):126–133

    Article  Google Scholar 

  • Refshauge KM, Chan R, Taylor JL, McCloskey DI (1995) Detection of movements imposed on human hip, knee, ankle and toe joints. J Physiol 488(1):231–241

    Google Scholar 

  • Reinkensmeyer DJ, Pang CT, Nessler JA, Painter CC (2002) Web-based telerehabilitation for the upper extremity after stroke. IEEE Trans Neural Syst Rehabil Eng 10(2):102–108

    Article  Google Scholar 

  • Reintsema D, Landzettel K, Hirzinger G (2007) DLR’s advanced telerobotic concepts and experiments for on-orbit servicing. In: Advances in telerobotics, pp 323–345

    Google Scholar 

  • Repperger DW, Phillips CA, Chelette TL (1995) A study on spatially induced “virtual force” with an information theoretic investigation of human performance. IEEE Trans Syst Man Cybern 25(10):1392–1404

    Article  Google Scholar 

  • Riddle CN, Edgley SA, Baker SN (2009) Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. J Neurosci 29(15):4993–4999

    Article  Google Scholar 

  • Rosser JC, Wood M, Payne JH, Fullum TM, Lisehora GB, Rosser LE, Savalgi RS (1997) Telementoring. Surg Endosc 11(8):852–855. doi:10.1007/s004649900471

    Article  Google Scholar 

  • Satava RM (2006) Robotics in colorectal surgery: telemonitoring and telerobotics. Surg Clin North Am 86(4):927–936

    Article  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14(5):3208–3224

    Google Scholar 

  • Sheridan TB (1997) Eight ultimate challenges of human-robot communication. Paper presented at the RO-MAN ’97, IEEE international workshop on robot and human communication

    Google Scholar 

  • Tan HZ, Srinivassan MA, Eberman B, Cheng B (1994) Human factors for the design of force reflecting haptic interfaces. In: Radcliffe CJ (ed) ASME DSC dynamic systems and control, vol 55–1, pp 353–359

    Google Scholar 

  • Turton A, Lemon RN (1999) The contribution of fast corticospinal input to the voluntary activation of proximal muscles in normal subjects and in stroke patients. Exp Brain Res 129(4):559–572

    Article  Google Scholar 

  • Venkadesan M, Valero-Cuevas FJ (2008) Neural control of motion-to-force transitions with the fingertip. J Neurosci 28(6):1366–1373

    Article  Google Scholar 

  • Wichmann F, Hill N (2001) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophysics 63(8):1293–1313

    Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7–8):1317–1329

    Article  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2(9):338–347

    Article  Google Scholar 

  • Yip MC, Tavakoli M, Howe RD (2011) Performance analysis of a haptic telemanipulation task under time delay. Adv Rob 25(5):651–673

    Article  Google Scholar 

  • Yoon W, Goshozono T, Kawabe H, Kinami M, Tsumaki Y, Uchiyama M, Doi T (2004) Model-based space robot teleoperation of ETS-VII manipulator. IEEE Trans Rob Autom 20(3):602–612

    Google Scholar 

Download references

Acknowledgments

This work was funded by Grant No. 2003021 from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel, and by the Israeli Science Foundation (ISF), Jerusalem, Israel. IN was supported by the Weizmann Institute National Program for Promoting Women in Science, and by the Marie Curie International Outgoing Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilana Nisky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Nisky, I., Leib, R., Milstein, A., Karniel, A. (2014). Perception of Stiffness with Force Feedback Delay. In: Di Luca, M. (eds) Multisensory Softness. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6533-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6533-0_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6532-3

  • Online ISBN: 978-1-4471-6533-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics