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Correspondances 

La Nature est un temple ou de vivants piliers 
Laissent parfois sortir de confuses paroles; 
L'homme y passe a travers des fon!ts de symboles 
Qui l'observent avec des regards familiers. 

Comme de longs echos qui de loin se confondent 
Dans une tenebreuse et profonde unite, 
Vaste comme la nuit et comme la clarte, 
Les parfums, les couleurs et les sons se repondent. 

II est des parfums frais comme des chairs d'enfants, 
Doux comme les hautbois, verts comme les prairies, 
- Et d'autres, corrompus, riches et triomphants, 

Ayant !'expansion des choses infinies, 
Comme l'ambre, le muse, le benjoin et l'encens, 
Qui chantent les transports de l'esprit et des sens. 

CHARLES BAUDELAIRE 

Les Fleurs du Mal, 1857 



Preface 

Introductory Remarks 

Problems in dynamics have fascinated physical scientists (and mankind in 
general) for thousands of years. Notable among such problems are those 
of celestial mechanics, especially the study of the motions of the bodies 
in the solar system. Newton's attempts to understand and model their 
observed motions incorporated Kepler's laws and led to his development 
of the calculus. With this the study of models of dynamical problems as 
differential equations began. 

In spite of the great elegance and simplicity of such equations, the solution 
of specific problems proved remarkably difficult and engaged the minds of 
many of the greatest mechanicians and mathematicians of the eighteenth 
and nineteenth centuries. While a relatively complete theory was developed 
for linear ordinary differential equations, nonlinear systems remained 
largely inaccessible, apart from successful applications of perturbation 
methods to weakly nonlinear problems. Once more, the most famous and 
impressive applications came in celestial mechanics. 

Analysis remained the favored tool for the study of dynamical problems 
until Poincare's work in the late-nineteenth century showed that perturba
tion methods might not yield correct results in all cases, because the series 
used in such calculations diverged. Poincare then went on to marry analysis 
and geometry in his development of a qualitative approach to the study of 
differential equations. 

The modern methods of qualitative analysis of differential equations 
have their origins in this work (Poincare [1880, 1890, 1899]) and in the work 
of Birkhoff [1927], Liapunov [1949], and others of the Russian School: 
Andronov and co-workers [1937, 1966, 1971, 1973] and Arnold [1973, 1978, 
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1982]. In the past 20 years there has been an explosion of research. Smale, in a 
classic paper [1967], outlined a number of outstanding problems and 
stimulated much of this work. However, until the mid-1970s the new tools 
were largely in the hands of pure mathematicians, although a number of 
potential applications had been sketched, notably by Ruelle and Takens 
[1971], who suggested the importance of"strange attractors" in the study of 
turbulence. 

Over the past few years applications in solid and structural mechanics 
as well as fluid mechanics have appeared, and there is now widespread 
interest in the engineering and applied science communities in strange 
attractors, chaos, and dynamical systems theory. We have written this 
book primarily for the members of this community, who do not generally 
have the necessary mathematical background to go directly to the research 
literature. We see the book primarily as a "user's guide" to a rapidly growing 
field of knowledge. Consequently we have selected for discussion only 
those results which we feel are applicable to physical problems, and have 
generally excluded proofs of theorems which we do not feel to be illustrative 
of the applicability. Nor have we given the sharpest or best results in all 
cases, hoping rather to provide a background on which readers may build 
by direct reference to the research literature. 

This is far from a complete treatise on dynamical systems. While it may 
irritate some specialists in this field, it will, we hope, lead them in the direction 
of important applications, while at the same time leading engineers and 
physical scientists in the direction of exciting and useful "abstract" results. 
In writing for a mixed audience, we have tried to maintain a balance in our 
statement of results between mathematical pedantry and readability for 
those without formal mathematical training. This is perhaps most noticable 
in the way we define terms. While major new terms are defined in the 
traditional mathematical fashion, i.e., in a separate paragraph signalled 
by the word Definition, we have defined many of the more familiar terms as 
they occur in the body of the text, identifying them by italics. Thus we form
ally define structural stability on p. 39, while we define asymptotic stability 
(of a fixed point) on p. 3. For the reader's convenience, the index contains 
references to the terms defined in both manners. 

The approach to dynamical systems which we adopt is a geometric one. 
A quick glance will reveal that this book is liberally sprinkled with illustra
tions-around 200 of them! Throughout we stress the geometrical and 
topological properties of solutions of differential equations and iterated 
maps. However, since we also wish to convey the important analytical 
underpinning of these illustrations, we feel that the numerous exercises, 
many of which require nontrivial algebraic manipulations and even computer 
work, are an essential part of the book. Especially in Chapter 2, the direct 
experience of watching graphical displays of numerical solutions to the 
systems of differential equations introduced there is extraordinarily valuable 
in developing an intuitive feeling for their properties. To help the reader 
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along, we have tried to indicate which exercises are fairly routine applications 
of theory and which require more substantial effort. However, we warn the 
reader that, towards the end of the book, and especially in Chapter 7, some of 
our exercises become reasonable material for Ph.D. theses. 

We have chosen to concentrate on applications in nonlinear oscillations 
for three reasons : 

(1) There are many important and interesting problems in that field. 
(2) It is a fairly mature subject with many texts available on the classical 

methods for analysis of such problems: the books of Stoker [1950], 
Minorsky [1962], Hale [1962], Hayashi [1964], or Nayfeh and Mook 
[1979] are good representatives. The geometrical analysis of two
dimensional systems (free oscillations) is also well established in the 
books of Lefschetz [1957] and Andronov and co-workers [1966, 1971, 
1973]. 

(3) Most abstract mathematical examples known in dynamical systems 
theory occur "naturally" in nonlinear oscillator problems. 

In this context, the present book should be seen as an attempt to extend the 
work of Andronov et al. [1966] by one dimension. This aim is not as modest 
as it might seem: as we shall see, the apparently innocent addition of a 
(small) periodic forcing term f(t) = f(t + T) to a single degree of freedom 
nonlinear oscillator, 

x + g(x, x) = 0, 

to yield the three-dimensional system 

or 

x + g(x, .X) = f(t), 

x = y, 

y = -g(x, y) + f(O), 

e = 1, 

can introduce an uncountably infinite set of new phenomena, in addition 
to the fixed points and limit cycles familiar from the planar theory of non
linear oscillations. This book is devoted to a partial description and under
standing of these phenomena. 

A somewhat glib observation, which, however, contains some truth, is 
that the pure mathematician tends to think of some nice (or nasty) property 
and then construct a dynamical system whose solutions exhibit it. In con
trast, the traditional role of the applied mathematician or engineer is to take 
a given system (perhaps a model that he or she has constructed) and find 
out what its properties are. We mainly adopt the second viewpoint, but 
our exposition may sometimes seem schizophrenic, since we are applying 



X Preface 

ideas of the former group to the problems of the latter group. Moreover, 
we feel strongly that the properties of specific systems cannot be discovered 
unless one knows what the possibilities are, and these are often revealed 
only by the general abstract theory. Practice and theory progress best 
hand-in-hand. 

The Contents of This Book 

This book is concerned with the application of methods from dynamical 
systems and bifurcation theories to the study of nonlinear oscillations. 
The mathematical models we consider are (fairly small) sets of ordinary 
differential equations and mappings. Many of the results discussed in 
this book can be extended to infinite-dimensional evolution systems arising 
from partial differential equations. However, the main ideas are most 
easily seen in the finite-dimensional context, and it is here that we shall 
remain. Almost all the methods we describe also generalize to dynamical 
systems whose phase spaces are differentiable manifolds, but once more, 
so as not to burden the reader with technicalities, we restrict our exposition 
to systems with Euclidean phase spaces. However, in the final section 
of the last chapter we add a few remarks on partial differential equations. 

In Chapter 1 we provide a review of basic results in the theory of dyna
mical systems, covering both ordinary differential equations (flows) and 
discrete mappings. (We concentrate on diffeomorphisms: smooth invertible 
maps.) We discuss the connection between diffeomorphisms and flows 
obtained by their Poincare maps and end with a review of the relatively 
complete theory of two-dimensional differential equations. Our discussion 
moves quickly and is quite cursory in places. However, the bulk of this 
material has been treated in greater detail from the dynamical systems 
viewpoint in the books of Hirsch and Smale [1974], Irwin [1980], and 
Palis and de Melo [1982], and from the oscillations viewpoint in the books 
of Andronov and his co-workers [1966, 1971, 1973] and we refer the reader 
to these texts for more details. Here the situation is fairly straightforward 
and solutions generally behave nicely. 

Chapter 2 presents four examples from nonlinear oscillations: the 
famous oscillators of van der Pol [1927] and Duffing [1918], the Lorenz 
equations [1963], and a bouncing ball problem. We show that the solutions 
of these problems can be markedly chaotic and that they seem to possess 
strange attractors: attracting motions which are neither periodic nor even 
quasiperiodic. The development of this chapter is not systematic, but it 
provides a preview of the theory developed in the remainder of the book. We 
recommend that either the reader skim this chapter to gain a general im
pression before going on to our systematic development of the theory in 
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later chapters, or read it with a microcomputer at hand, so that he can 
simulate solutions of the model problems we discuss. 

We then retreat from the chaos of these examples to muster our forces. 
Chapter 3 contains a discussion of the methods of local bifurcation theory 
for flows and maps, including center manifolds and normal forms. Rather 
different, less geometrical, and more analytical discussions of local bifurca
tions can be found in the recent books by looss and Joseph [1981] and Chow 
and Hale [1982]. 

In Chapter 4 we develop the analytical methods of averaging and pertur
bation theory for the study of periodically forced nonlinear oscillators, 
and show that they can yield surprising global results. We end this chapter 
with a brief discussion of chaos and nonintegrability in Hamiltonian systems 
and the Kolmogorov-Arnold-Moser theory. More complete introductions to 
this area can be found in Arnold [1978], Lichtenberg and Lieberman [1982], 
or, for the more mathematically inclined, Abraham and Marsden [1978]. 

In Chapter 5 we return to chaos, or rather to the close analysis of geo
metrically defined two-dimensional maps with complicated invariant sets. 
The famous horseshoe map of Smale is discussed at length, and the method 
of symbolic dynamics is described and illustrated. A section on one-dimen
sional (noninvertible) maps is included, and we return to the specific examples 
of Chapter 2 to provide additional information and illustrate the analytical 
methods. We end this chapter with a brief discussion of Liapunov exponents 
and invariant measures for strange attractors. 

In Chapter 6 we discuss global homoclinic and heteroclinic bifurcations, 
bifurcations of one-dimensional maps, and once more illustrate our results 
with the examples of Chapter 2. Finally, in our discussion of global bi
furcations of two-dimensional maps and wild hyperbolic sets, we arrive 
squarely at one of the present frontiers of the field. We argue that, while the 
one-dimensional theory is relatively complete (cf. Collet and Eckmann 
[1980]), the behavior of two-dimensional diffeomorphisms appears to be 
considerably more complex and is still incompletely understood. We are 
consequently unable to complete our analysis of the nonlinear oscillators of 
van der Pol and Duffing, but we are able to give a clear account of much of 
their behavior and to show precisely what presently obstructs further 
analysis. 

In the final chapter we show how the global bifurcations, discussed 
previously, reappear in degenerate local bifurcations, and we end with 
several more models of physical problems which display these rich and 
beautiful behaviors. 

Throughout the book we continually return to specific examples, and 
we have tried to illustrate even the most abstract results. In our Appendix 
we give suggestions for further reading. We make no claims for the complete
ness of our bibliography. We have, however, tried to include references to 
the bulk of the papers, monographs, lecture notes, and books which have 
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proved useful to ourselves and our colleagues, but we recognize that our 
biases probably make this a rather eclectic selection. 

We have included a glossary of the more important terminology for the 
convenience of those readers lacking a formal mathematical training. 

Finally, we would especially like to acknowledge the encouragement, 
advice, and gentle criticisms of Bill Langford, Clark Robinson and David 
Rod, whose careful readings of the manuscript enabled us to make many 
corrections and improvements. 

Nessen MacGiolla Mhuiris, Xuehai Li, Lloyd Sakazata, Rakesh, 
Kumarswamy Hebbale, and Pat Hollis suffered through the preparation 
of this manuscript as students in TAM 776 at Cornell, and pointed out 
many errors almost as quickly as they were made. Edgar Knobloch, Steve 
Shaw, and David Whitley also read and commented on the manuscript. 
The comments of these and many other people have helped us to improve 
this book, and it only remains for each of us to lay the blame for any re
maining errors and omissions squarely on the shoulders of the other. 

Barbara Boettcher prepared the illustrations from our rough notes and 
Dolores Pendell deserves more thanks than we can give for her patient 
typing and retyping of our almost illegible manuscripts. 

Finally, we thank our wives and children for their understanding and 
patience during the production of this addition to our families. 

JOHN GUC'KENHEIMER 

Santa Cru:::. Sprinq 1983 

Preface to the Second Printing 

PHILIP HOLMES 

Ithaca, Sprinq 1983 

The reprinting of this book some 21 years after its publication has provided 
us with the opportunity of correcting many minor typographical errors and a 
few errors of substance. In particular, errors in Section 6.5 in the study of the 
Silnikov return map have been corrected, and we have rewritten parts of 
Sections 7.4 and 7.5 fairly extensively in the light of recent work by Carr, 
Chow, Cushman, Hale. Sanders, Zholondck, and others on the number of 
limit cycles and bifurcations in these unfoldings. In the former case the main 
result is unaffected, but in the latter case some of our intuitions (as well as the 
incorrect calculations with which we supported them) have proved wrong. 
We take some comfort in the fact that our naive assertions stimulated some of 
the work which disproved them. 

Although progress in some areas of applied dynamical systems has been 
rapid. and significant new developments have occurred since the first 
printing, we have not seen fit to undertake major revisions of the book at this 
stage, although we have briefly noted some of the developments which bear 
directly on topics discussed in the book. These comments appear at the end of 
the book. directly after the Appendix. A complete revision will perhaps be 
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appropriate 5 or 10 years from now. (Anyone wishing to perform it, please 
contact us!) In the same spirit, we have not attempted to bring the 
bibliography up to date, although we have added about 75 references, 
including those mentioned above. References that were in preprint form at 
the first printing have been updated in cases where the journal of publication 
is known. In cases in which the publication date of the journal differs from 
that of the preprint, the journal date is given at the end of the reference. We 
note that a useful bibliography due to Shiraiwa [1981] has recently been 
updated (Shiraiwa [1985]); it contains over 4,400 items. 

In preparing the revisions we have benefited from the advice and correc
tions supplied by many readers, including Marty Golubitsky, Kevin Hockett, 
Fuhua Ling, Wei-Min Liu, Clark Robinson, Jan Sanders, Steven Shaw, Ed 
Zehnder, and Zhaoxuan Zhu. Professor Ling, of the Shanghai Jiao Tong 
University, with the help of his students and of Professor Zhu, of Peking 
University, has prepared a Chinese translation of this book. 

Preface to the Fifth Printing 

JOHN GUCKENHEIMER 

PHILIP HOLMES 

Ithaca, Fall 1985 

When it first appeared in 1983, this book was (almost) unique. Thirteen 
years later, there are dozens of texts, at various levels, that bridge the gap 
between the mathematical theory of dynamical systems and the "practical" 
computational tools necessary for applications to problems in the sciences 
and engineering. In this context, we have been asked several times to revise 
the book, but, while we might now treat some of the topics differently and add 
others, we feel that there is little here which should be cut or significantly 
changed. Indeed, the host of newer books, some of which we note in the 
Postscript, makes a revision less appealing. Most of the details missing here 
can now be found in one or another of those texts. Including them would 
make our book larger, more unwieldly, and more expensive. We believe that 
the topics we originally chose continue to provide a good basis on which 
more detailed studies of background, technical details, or applications may 
be built. 

In preparing this printing, as with the third and fourth, we have continued 
to correct errors and oversights. We particularly thank Ralf Wittenberg, 
Jinqiao Duan, and Mark Johnson for finding many of these. 

John Guckenheimer 
Ithaca, Fall 1996 

Philip Holmes 
Princeton, Fall 1996 
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