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Basic Notation 

Basic Sets and Spaces 
" :=" equal by definition 
" ==" identically equal 
o empty set 
I I I cardinality of the set I 
x r-+ f (x) mapping of the point x into f (x) 
IR = IR U {+oo} U {-oo} extended real line 
IRn is n-dimensional Euclidean space 
IR't = {x E IRn : Xi :::: 0, i = 1, ... ,n} nonnegative orthant 
IR~ = -IR't = {x E IRn : Xi ~ 0, i = 1, ... ,n} nonnpositive orthant 
X, Y are Banach or locally convex topological vector spaces 
S p linear space of p x p symmetric matrices 
S~ (S~) cone of p x p symmetric positive (negative) semidefinite matrices 
Wr C SP set of matrices of rank r 
i2 Hilbert space of sequences x = (Xi)~1 such that L~I xl < 00 and with 

IIxll = (L~I xl) 1/2 and {x, y} = L~I XiYi, x, Y E i2 
L2[0, 1] Hilbert space of equivalence classes of real valued, square integrable, 
functions 1/I'(t), with 1/1'1 ~ 1/1'2 if 1/1'1 (t) = 1/I'2(t) for all t E [0, 1] except possibly 
on a set of Lebesgue measure zero, and {1/1', t/J} = Ii 1/I'(t)t/J(t)dt 

L p(Q, F, J-t) Banach space of F-measurable functions 1/1' : Q -+ IR having finite 

norm 111/I'lip := Un 11/I'(lV)IPdJ-t(w))I/P 
[Lp(Q)]+ C Lp(Q, F, J-t) set of almost everywhere nonnegative valued func
tions 



xiv Basic Notation 

C (0) Banach space of continuous functions t/I : 0 -+ JR. defined on the compact 
metric space a and equipped with the sup-norm 11..",11 = sUPwESl It/I(£I)I 

Cl(o) Banach space of i-times continuously differentiable functions t/I : 0 -+ 
JR., with 0 c JR.n 

C 1•1(0) space of continuously differentiable functions t/I : a -+ JR. and such 
that D..",(·) is locally Lipschitz continuous 

V(O) Set of real valued Coo -smooth functions over 0 with compact support 
Coo(o) Set of continuous functions with compact support in a 
(h.m Family of barrel sets associated with the topology on V(O) 
OK Family of barrel sets associated with the topology on Coo (0) 
W m•s (0) = {t/I E Ls (0) : Dq t/I E Ls (0) if Iq 1 :::: m} Sobolev space, where Dq t/I = 
a1q1t/l/axr1 ••• axil and Iql = ql + ... + ql. 

w:,s (0) Closure of V(O) in Wm,s (0) 
W1,OO(0) Banach space of Lipschitz continuous functions t/I : 0-+ JR. 
Hm(O), H-1(0), W-1,s' (0) Sobolevspace Wm,2(0),dual space to HJ(O),and 

dual space to WJ's (0), respectively 
C+(O) set of nonnegative valued functions in the space C(O) 
C_(O) set of non positive valued functions in the space C(O) 
C(X, Y) space of linear continuous operators A : X -+ Y equipped with the 

operator norm IIAII = sUP.xeBx IIAxll 
X* = C(X, JR.) dual space of X 
B(x,r) = {x' EX: IIx' -xII < r} openballofradiusr > o centered atx 
Bx = Bx(O, 1) open unit ball in X 
Bx closed unit ball in X 
Ix] = {tx : t E JR.} linear space generated by vector x 
2x the set of subsets of X 
dim(X) dimension of the linear space X 
Pg = {IL E C (n)* : IL(n) = 1, IL ~ O} set of probability measures over n 
cap(A) capacity of the set A 

Matrices and Vectors 
(a, x) value of the linear functional a E X* on x E X 
x . y = E7 = 1 Xi Yi scalar product of two finite dimensional vectors x, y E IRn 

AT transpose of the matrix A 
rank(A) rank of the matrix A 
vec(A) vector obtained by stacking columns of the matrix A 
A t Moore-Penrose pseudoinverse of the matrix A 
traceA = Ef=l ajj trace of the p x p matrix A 
A. B = trace(AB) scalar product of two symmetric matrices A, BE SP 
A ® B Kronecker product of matrices A and B 
Amax(A) largest eigenvalue of the symmetric matrix A ESP 
A ~ 0 (A ~ 0) means that the matrix A ESP is positive (negative) semidefinite 
I P the p x p identity matrix 



Basic Notation xv 

Operations on Sets 
SpeS) = IR+(S - S) linear space generated by the set SeX 
IR+(S) = {tx : XES, t 2: o} cone generated by the set SeX 
cl(S) topological closure of the set Sex, if X is a Banach space, closure is 

taken with respect to the norm (i.e., strong) topology 
int(S) = {x E S : there is a neighborhood V of x such that V c S} interior of the 
set S 

bdr(S) (also denoted as) = cl(S) \ int(S) boundary of the set S 
ri(S) = {x E S: there is a neighborhood V of x such that V n (x + L) c S} 

(where L := cl[Sp(S))) relative interior of the convex set S 
core(S) = {x ES:VX'EX, 3e>0, VtE[-e,e], x+tx'ES} 
dist(x, S) = inf zeS IIx - z II distance from the point x E X to set SeX 
Haus(S, T) = max {suPxes dist(x, T), sUPxeT dist(x, S)} Hausdorff distance be
tween the sets S and T 

Sl.. = {a E X* : (a, x) = 0, Vx E S} orthogonal complement of the set SeX 
Soc = {h EX: 3x E S, Vt 2: 0, x + th E S} recession cone of the convex set 
S 

u(a, S) = sUPxeS(a, x} support function of the set S 
Is (. ) indicator function of the set S 
conv(S) convex hull of the set S 
diam(S) = sUPx,x'eS IIx - x'il diameter of the set S 
C- = {a E X* : (a, x) :::: 0, Vx E C} polar (negative dual) of the cone C C X, 
where X and X* are paired spaces 

lin(C) lineality subspace of the convex cone C 
a ~c b order relation imposed by the cone C, i.e., b - a E C 
a V b the least upper bound of a and b 
a 1\ b the greatest lower bound of a and b 
[a, b lc = {x : a ~c x ~c b} interval with respect to the order relation " ~c " 
Gmx W mapping G intersects manifold W transversally at the point x 

Tangent Sets 
Ts(x) = lim SUPq.o(S - x)lt contingent (Bouligand) cone to the setS at the point 
XES 
T~(x) = liminft.j.o(S -x)lt = {h EX: dist(x +th, S) = o(t), t 2: O} innertan
gent cone to the set S at the point XES 

Ts (x) Clarke tangent cone to the set S at the point XES 
'Rs(x) = {h EX: 3t > 0, x + th E S} radial cone to the convex set S at the 

point x E S 
Ts(x) = cl['R.s(x)] = T~(x) tangent cone to the convex set S at the point xES 

Tt(x, h) = lim SUPt.j.O(S - x - th)/(1t2) outer second order tangent set to the 
set S at the point XES in the direction h 

T?(x, h) = lim inft.j.o(S - x - th)/(1t2) inner second order tangent set to the 
set S at the point XES in the direction h 



xvi Basic Notation 

T~,2,a (x, h) = liminfn->-oo(S - x - tnh)/(!t;) sequential second order tangent 
set associated with the sequence (J' = {tn} such that tn -i 0 

E set of sequences (J' = {tn } of positive numbers converging to zero 
Ns(x) = [Ts(x)]- normal cone to the set SeX at the point XES 

Ns(x) = {a E X* : (a, z - x) ::: 0, Vz E S} normal cone to the convex set S 
P N s (x) set of proximal normals to S at x 
P N~(x) set of 8-proximal normals to S at x 

Functions and Operators 
f : X ---+ IR extended real valued function 
domf = {x EX: f(x) < +oo} domain of the function f 
gphf = {(x, I(x» : x E X} C X x IR graph of the function f 
epif = {(x, a) : a 2: f(x), x E X} C X x IR epigraph of the function f 
lscf(x) = min{f(x), lim infx'->-x f(x')} lower semicontinuous hull of f 
elf (x) elosure of the function f 
conv f convex hull of the function f 
levaf = {x EX: f(x) s a} level set of the function f 
f*(x*) = SUPXEX{ (x*, x) - f(x)} conjugate of the function f 
ie (.) Moreau-Yosida regularization of the function f 
f ¢ g(u) = infxeX{f(u - x) + g(x)} infimal convolution of the extended real 
valued functions [f, g : X ---+ lR] 
fog composition of a mapping g : X ---+ Y and a mapping (extended real valued 
function) I : Y ---+ Z, i.e., (f 0 g)(x) = f(g(x» 

A1. = KerA = {y E Y: (A, y) = O} null space of A E Y* 
N(Q) = {x EX: Q(x) = O} null space of the quadratic form Q : X ---+ lR 
A * : Y* ---+ X* adjoint operator of the continuous linear operator A : X ---+ Y, 
i.e., (A*A, x) = (A, Ax), for all x E X and A E Y* 

ns(x) = argminzEs IIx - zll set-valued metric projection of the point x onto S 
Ps (x) E ns (x) a metric projection of the point x onto S 
liy = I:7=1 a2 y law; Laplace operator 
8(w) measure of mass one at the point w (Dirac measure) 
JL ~ 0 means that the measure JL is nonnegative valued 
supp(JL) support of the measure JL 
IJLI total variation of the measure JL 
[a]+ = max{O, a} ,fora E lR 
V for all, 3 exists 

Multifunctions 
'II : X ---+ 2Y multifunction (point-to-set mapping), which maps X into the set of 
subsets of Y 

dom('II) = {x EX: 'II(x) =1= 0} domain of 'II 
range('II) = 'II(X) = {y E Y: y E 'II(x), x E X} range of'll 
gph('II) = {(x, y) E X X Y : y E 'II(x), x E X} graph of 'II 
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\{I-I (y) = {x EX: y E \{I(x)} inverse multifunction of \{I 
limsuPx_Ho \{I(x) = {Y E Y: liminfx-Ho [dist(y. \{I(x))] = O} upper set limit 
of the multifunction \{I at the point x 

liminfx-Ho \{I(x) = {y E Y: limsuPx_HO [dist(y. \{I(x»J = O} lower set limit 
of the multifunction \{I at the point x 

Limits and Derivatives 
r(h) = o(h) means that r(h)/lIhll -+ 0 as h -+ 0 
r(h) = O(h) means that r(h)/lIhll is bounded for all h in a neighborhood of 
OE X 

V I(x) = (al(X)/fJxl • ...• al(x)/oxn ) gradient of the function I : IRn -+ IR 
at the point x E IRn 

V2/(x) = [o2/(x)/OXiOXjJ7,j=1 Hessian matrix of second order partial deriva
tives of the function I : IRn -+ IR at the point x E IRn 

Dg(x) : X -+ Y derivative (Gateaux, Hadamard, or Frechet, depending on the 
context) of the mapping g : X -+ Y at the point x E X 

D2 g(x) : X -+ £(X, Y) second-order derivative of the mapping g at the point x 
D 2g(x)(h, h) = [D2g(x)hJh quadratic form corresponding to D2g(x) 
Dxg(x, u) partial derivative of the mapping g : X x U -+ Y 
g'(x, d) = limt.j.o [g(x + td) - g(x)]/t directional derivative of the mapping g : 

X -+ Y at the point x in the direction d 
I~ (x, d) = lim SUPt.j.o [I (x + td) - I (x)]/ t upper directional derivative of the 
function I : X -+ IR 

I'-(x, d) = liminft.j.o [J(x + td) - I(x)]/t lower directional derivative of the 
function I : X -+ IR 

f"(x; d, w) = limt.j.O [/(x + td + !t2w) - I(x) - tl'(x, d)]/(!t2) second-order 
directional derivative of the function I 
I~ (x, h) = e-lim inft,l.o [J(x + t h) - I(x)]/t lower directional epiderivative 
I~ (x, h) = e-lim SUPt,l.O [I (x + t h) - I (x) J/ t upper directional epiderivative 
I~+(x; h, w) = e-liminfqo [J(x + th + !t2w) - I(x) - t/~(x, h)JI(!t2) lower 
second order directional epiderivative 

I~+(x; h, w) = e-lim SUPt,l.O [/(x + th + it2w) - I(x) - t/~(x, h)JI(it2) upper 
second order directional epiderivative 

d2/(xla)(h) := lim inf '+0 [J(x + th') - I(x) - t(a, h')J/(it2) second order 
h'_h 

subderivative of the function I at the point x with respect to a E X* 
a/(x) = {x* E X* : I(y) - I(x) ~ (x*, y - x), Vy EX} subdifferentialofthe 

function I : X -+ IR 

Optimization Problems 
val(P) optimal value of the problem (P) 
¢ feasible set of the problem (P) 
S(P) set of optimal solutions of the problem (P) 



xviii Basic Notation 

L(x, A) = I(x) + (A, G(x» Lagrangian function of the problem (P) 
Lg(x, a, A) = al(x) + (A, G(x» generalized Lagrangian function 
U(x, A) = (A, G(x» singular Lagrangian function 
A(x) set of Lagrange multipliers at the point x 
A g (x) set of generalized Lagrange multipliers at the point x 
AS (x) set of singular Lagrange multipliers at the point x 
A~(x) = {(a, A) E Ag(x) : a + IIAII = I} set of normalized generalized La-

grange multipliers at the point x 
lex) = {i : gi(X) = 0, i = q + 1, ... ,p} setofactiveatx inequalityoo.nstraints 
l+(x, A) = {i E lex) : Ai > O} 
lo(x, A) = {i E lex) : Ai = OJ 
A(x) = {w EO: g(x, w) = O} set of active at x constraints of g(x, w) ::: 0, w E 

Q 

C (x) set of critical directions (critical cone) at the point x 
CFJ (x) approximate critical cone at the point x 
(Pu ) parameterized by 14 E U optimization problem 
<1»(14) feasible set of the parameterized problem (Pu ) 

v(u) = val(Pu ) = infxE~(U) I(x, 14) optimal value (marginal) function of (Pu ) 
S(u) = S(Pu ) = argminxE4I(u) I(x, 14) set of optimal solutions of (Pu ) 
i(u) E S(u) an optimal (e-optimal) solution of (Pu ) 
L(x, A, 14), Lg(x, a, A, 14) and U(x., A, 14) Lagrangian, generalized Lagrangian 

and singular Lagrangian functions, respectively, of (Pu) 
A(x, u) and A g (x, 14) sets of Lagrange and generalized Lagrange multipliers, 
respectively, of (Pu ) at the point (x, 14) . 


