Springer Series in Operations Research

Editors:
Peter Glynn Stephen Robinson

Springer Series in Operations Research

Altiok: Performance Analysis of Manufacturing Systems
Birge and Louveaux: Introduction to Stochastic Programming
Bonnans and Shapiro: Perturbation Analysis of Optimization Problems
Bramel and Simchi-Levi: The Logic of Logistics: Theory, Algorithms, and Applications for Logistics Management
Dantzig and Thapa: Linear Programming 1: Introduction
Drezner (Editor): Facility Location: A Survey of Applications and Methods
Fishman: Monte Carlo: Concepts, Algorithms, and Applications
Nocedal and Wright: Numerical Optimization
Olson: Decision Aids for Selection Problems
Yao (Editor): Stochastic Modeling and Analysis of Manufacturing Systems

J. Frédéric Bonnans Alexander Shapiro

Perturbation Analysis of Optimization Problems

J. Frédéric Bonnans
INRIA-Rocquencourt
Domaine de Voluceau
BP 105
Le Chesnay Cedex 78153
France

Alexander Shapiro
School of Industrial
and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205
USA

Series Editors:

Peter Glynn
Department of Operations Research
Stanford University
Stanford, CA 94305
USA

Stephen Robinson
Department of Industrial Engineering
University of Wisconsin
Madison, WI 53786-1572
USA

Library of Congress Cataloging-in-Publication Data
Bonnans, J.F. (Joseph Frédéric), 1957-
Perturbation analysis of optimization problems / J. Frédéric Bonnans, Alexander Shapiro. p. cm. - (Springer series in operations research)
Includes bibliographical references and index.
ISBN 978-1-4612-7129-1 ISBN 978-1-4612-1394-9 (eBook)
DOI 10.1007/978-1-4612-1394-9
1. Perturbation (Mathematics) 2. Mathematical optimization. I. Shapiro, Alexander, 1949- II. Title. III. Series.
QA871 .B694 2000
519.3-dc21
00-020825

Printed on acid-free paper.
(c) 2000 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc. in 2000
Softcover reprint of the hardcover 1st edition 2000
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC.
except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Timothy Taylor; manufacturing supervised by Erica Bresler. Photocomposed copy prepared from the authors' $I_{E} \mathbf{T E X}_{\mathrm{E}} \mathrm{X}$ files.

This book is dedicated to our families, our wives Viviane and Julia, and our children Juliette and Antoine, and Benjamin and Daniel.

Contents

Basic Notation xiii
1 Introduction 1
2 Background Material 8
2.1 Basic Functional Analysis 8
2.1.1 Topological Vector Spaces 8
2.1.2 The Hahn-Banach Theorem 17
2.1.3 Banach Spaces 21
2.1.4 Cones, Duality and Recession Cones 31
2.2 Directional Differentiability and Tangent Cones 34
2.2.1 First Order Directional Derivatives 34
2.2.2 Second Order Derivatives 37
2.2.3 Directional Epiderivatives of Extended Real Valued Functions 39
2.2.4 Tangent Cones 44
2.3 Elements of Multifunctions Theory 54
2.3.1 The Generalized Open Mapping Theorem 55
2.3.2 Openness, Stability and Metric Regularity 57
2.3.3 Stability of Nonlinear Constrained Systems 60
2.3.4 Constraint Qualification Conditions 67
2.3.5 Convex Mappings 72
2.4 Convex Functions 74
2.4.1 Continuity 74
2.4.2 Conjugacy 77
2.4.3 Subdifferentiability 81
2.4.4 Chain Rules 92
2.5 Duality Theory 95
2.5.1 Conjugate Duality 95
2.5.2 Lagrangian duality 104
2.5.3 Examples and Applications of Duality Schemes 107
2.5.4 Applications to Subdifferential Calculus 113
2.5.5 Minimization of a Maximum over a Compact Set 117
2.5.6 Conic Linear Problems 125
2.5.7 Generalized Linear Programming and Polyhedral Multi- functions 133
3 Optimality Conditions 146
3.1 First Order Optimality Conditions 147
3.1.1 Lagrange Multipliers 147
3.1.2 Generalized Lagrange Multipliers 153
3.1.3 Ekeland's Variational Principle 156
3.1.4 First Order Sufficient Conditions 159
3.2 Second Order Necessary Conditions 162
3.2.1 Second Order Tangent Sets 162
3.2.2 General Form of Second Order Necessary Conditions 173
3.2.3 Extended Polyhedricity 180
3.3 Second Order Sufficient Conditions 186
3.3.1 General Form of Second Order Sufficient Conditions 186
3.3.2 Quadratic and Extended Legendre Forms 193
3.3.3 Second Order Regularity of Sets and "No Gap" Second Order Optimality Conditions 198
3.3.4 Second Order Regularity of Functions 208
3.3.5 Second Order Subderivatives 212
3.4 Specific Structures 217
3.4.1 Composite Optimization 217
3.4.2 Exact Penalty Functions and Augmented Duality 222
3.4.3 Linear Constraints and Quadratic Programming 228
3.4.4 A Reduction Approach 240
3.5 Nonisolated Minima 245
3.5.1 Necessary Conditions for Quadratic Growth 245
3.5.2 Sufficient Conditions 249
3.5.3 Sufficient Conditions Based on General Critical Direc- tions 256
4 Stability and Sensitivity Analysis 260
4.1 Stability of the Optimal Value and Optimal Solutions 261
4.2 Directional Regularity 266
4.3 First Order Differentiability Analysis of the Optimal Value Function 271
4.3.1 The Case of Fixed Feasible Set 272
4.3.2 Directional Differentiability of the Optimal Value Func- tion Under Abstract Constraints 278
4.4 Quantitative Stability of Optimal Solutions and Lagrange Multi- pliers 286
4.4.1 Lipschitzian Stability in the Case of a Fixed Feasible Set 287
4.4.2 Hölder Stability Under Abstract Constraints 290
4.4.3 Quantitative Stability of Lagrange Multipliers 294
4.4.4 Lipschitzian Stability of Optimal Solutions and Lagrange Multipliers 299
4.5 Directional Stability of Optimal Solutions 303
4.5.1 Hölder Directional Stability 303
4.5.2 Lipschitzian Directional Stability 305
4.6 Quantitative Stability Analysis by a Reduction Approach 314
4.6.1 Nondegeneracy and Strict Complementarity 315
4.6.2 Stability Analysis 320
4.7 Second Order Analysis in Lipschitz Stable Cases 323
4.7.1 Upper Second Order Estimates of the Optimal Value Function 324
4.7.2 Lower Estimates Without the Sigma Term 332
4.7.3 The Second Order Regular Case 337
4.7.4 Composite Optimization Problems 341
4.8 Second Order Analysis in Hölder Stable Cases 347
4.8.1 Upper Second Order Estimates of the Optimal Value Function 347
4.8.2 Lower Estimates and Expansions of Optimal Solutions 355
4.8.3 Empty Sets of Lagrange Multipliers 357
4.8.4 Hölder Expansions for Second Order Regular Problems 363
4.9 Additional Results 365
4.9.1 Equality Constrained Problems 365
4.9.2 Uniform Approximations of the Optimal Value and Optimal Solutions 369
4.9.3 Second Order Analysis for Nonisolated Optima 379
4.10 Second Order Analysis in Functional Spaces 386
4.10.1 Second Order Tangent Sets in Functional Spaces of Continuous Functions 386
4.10.2 Second Order Derivatives of Optimal Value Functions 391
4.10.3 Second Order Expansions in Functional Spaces 394
5 Additional Material and Applications 401
5.1 Variational Inequalities 401
5.1.1 Standard Variational Inequalities 402
5.1.2 Generalized Equations 407
5.1.3 Strong Regularity 412
5.1.4 Strong Regularity and Second Order Optimality Condi- tions 422
5.1.5 Strong Stability 427
5.1.6 Some Examples and Applications 429
5.2 Nonlinear Programming 436
5.2.1 Finite Dimensional Linear Programs 436
5.2.2 Optimality Conditions for Nonlinear Programs 440
5.2.3 Lipschitz Expansions of Optimal Solutions 445
5.2.4 Hölder Expansion of Optimal Solutions 453
5.2.5 High Order Expansions of Optimal Solutions and La- grange Multipliers 459
5.2.6 Electrical Networks 462
5.2.7 The Chain Problem 465
5.3 Semi-definite Programming 470
5.3.1 Geometry of the Cones of Negative Semidefinite Matri- ces 472
5.3.2 Matrix Convexity 477
5.3.3 Duality 479
5.3.4 First Order Optimality Conditions 483
5.3.5 Second Order Optimality Conditions 486
5.3.6 Stability and Sensitivity Analysis 491
5.4 Semi-infinite Programming 496
5.4.1 Duality 497
5.4.2 First Order Optimality Conditions 506
5.4.3 Second Order Optimality Conditions 515
5.4.4 Perturbation Analysis 521
6 Optimal Control 527
6.1 Introduction 527
6.2 Linear and Semilinear Elliptic Equations 528
6.2.1 The Dirichlet Problem 528
6.2.2 Semilinear Elliptic Equations 534
6.2.3 Strong Solutions 537
6.3 Optimal Control of a Semilinear Elliptic Equation 539
6.3.1 Existence of Solutions, First Order Optimality System 539
6.3.2 Second Order Necessary or Sufficient Conditions 543
6.3.3 Some Specific Control Constraints 548
6.3.4 Sensitivity Analysis 550
6.3.5 State Constrained Optimal Control Problem 553
6.3.6 Optimal Control of an Ill-Posed System 555
6.4 The Obstacle Problem 558
6.4.1 Presentation of the Problem 558
6.4.2 Polyhedricity 559
6.4.3 Basic Capacity Theory 560
6.4.4 Sensitivity Analysis and Optimal Control 566
7 Bibliographical Notes 570
7.1 Background Material 570
7.2 Optimality Conditions 572
7.3 Stability and Sensitivity Analysis 574
7.4 Applications 578
7.4.1 Variational Inequalities 578
7.4.2 Nonlinear Programming 580
7.4.3 Semi-definite Programming 580
7.4.4 Semi-infinite Programming 581
7.5 Optimal Control 581
References 583
Index 595

Basic Notation

Basic Sets and Spaces

":=" equal by definition
" $\equiv "$ identically equal
\emptyset empty set
$|I|$ cardinality of the set I
$x \mapsto f(x)$ mapping of the point x into $f(x)$
$\overline{\boldsymbol{R}}=\boldsymbol{R} \cup\{+\infty\} \cup\{-\infty\}$ extended real line
\boldsymbol{R}^{n} is n-dimensional Euclidean space
$\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, i=1, \ldots, n\right\}$ nonnegative orthant
$\mathbb{R}_{-}^{n}=-\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i} \leq 0, i=1, \ldots, n\right\}$ nonnpositive orthant
X, Y are Banach or locally convex topological vector spaces
\mathcal{S}^{p} linear space of $p \times p$ symmetric matrices
$\mathcal{S}_{+}^{p}\left(\mathcal{S}_{-}^{p}\right)$ cone of $p \times p$ symmetric positive (negative) semidefinite matrices
$\mathcal{W}_{r} \subset \mathcal{S}^{p}$ set of matrices of rank r
ℓ_{2} Hilbert space of sequences $x=\left(x_{i}\right)_{i=1}^{\infty}$ such that $\sum_{i=1}^{\infty} x_{i}^{2}<\infty$ and with $\|x\|=\left(\sum_{i=1}^{\infty} x_{i}^{2}\right)^{1 / 2}$ and $\langle x, y\rangle=\sum_{i=1}^{\infty} x_{i} y_{i}, x, y \in \ell_{2}$
$L_{2}[0,1]$ Hilbert space of equivalence classes of real valued, square integrable, functions $\psi(t)$, with $\psi_{1} \sim \psi_{2}$ if $\psi_{1}(t)=\psi_{2}(t)$ for all $t \in[0,1]$ except possibly on a set of Lebesgue measure zero, and $\langle\psi, \phi\rangle=\int_{0}^{1} \psi(t) \phi(t) d t$
$L_{p}(\Omega, \mathcal{F}, \mu)$ Banach space of \mathcal{F}-measurable functions $\psi: \Omega \rightarrow \mathbb{R}$ having finite norm $\|\psi\|_{p}:=\left(\int_{\Omega}|\psi(\omega)|^{p} d \mu(\omega)\right)^{1 / p}$
$\left[L_{p}(\Omega)\right]_{+} \subset L_{p}(\Omega, \mathcal{F}, \mu)$ set of almost everywhere nonnegative valued functions
$C(\Omega)$ Banach space of continuous functions $\psi: \Omega \rightarrow \mathbb{R}$ defined on the compact metric space Ω and equipped with the sup-norm $\|\psi\|=\sup _{\omega \in \Omega}|\psi(\omega)|$
$C^{\ell}(\Omega)$ Banach space of ℓ-times continuously differentiable functions $\psi: \Omega \rightarrow$ \mathbb{R}, with $\Omega \subset \mathbb{R}^{n}$
$C^{1,1}(\Omega)$ space of continuously differentiable functions $\psi: \Omega \rightarrow \mathbb{R}$ and such that $D \psi(\cdot)$ is locally Lipschitz continuous
$\mathcal{D}(\Omega)$ Set of real valued C^{∞}-smooth functions over Ω with compact support
$C_{00}(\Omega)$ Set of continuous functions with compact support in Ω
$\mathcal{O}_{K, m}$ Family of barrel sets associated with the topology on $\mathcal{D}(\Omega)$
\mathcal{O}_{K} Family of barrel sets associated with the topology on $C_{00}(\Omega)$
$W^{m, s}(\Omega)=\left\{\psi \in L_{s}(\Omega): D^{q} \psi \in L_{s}(\Omega)\right.$ if $\left.|q| \leq m\right\}$ Sobolev space, where $D^{q} \psi=$ $\partial^{|q|} \psi / \partial x_{1}^{q_{1}} \cdots \partial x_{\ell}^{q_{\ell}}$ and $|q|=q_{1}+\cdots+q_{\ell}$
$W_{0}^{m, s}(\Omega)$ Closure of $\mathcal{D}(\Omega)$ in $W^{m, s}(\Omega)$
$W^{1, \infty}(\Omega)$ Banach space of Lipschitz continuous functions $\psi: \Omega \rightarrow \mathbb{R}$
$H^{m}(\Omega), H^{-1}(\Omega), W^{-1, s^{\prime}}(\Omega)$ Sobolev space $W^{m, 2}(\Omega)$, dual space to $H_{0}^{1}(\Omega)$, and dual space to $W_{0}^{1, s}(\Omega)$, respectively
$C_{+}(\Omega)$ set of nonnegative valued functions in the space $C(\Omega)$
$C_{-}(\Omega)$ set of nonpositive valued functions in the space $C(\Omega)$
$\mathcal{L}(X, Y)$ space of linear continuous operators $A: X \rightarrow Y$ equipped with the operator norm $\|A\|=\sup _{x \in B_{X}}\|A x\|$
$X^{*}=\mathcal{L}(X, \boldsymbol{R})$ dual space of X
$B(x, r)=\left\{x^{\prime} \in X:\left\|x^{\prime}-x\right\|<r\right\}$ open ball of radius $r>0$ centered at x
$B_{X}=B_{X}(0,1)$ open unit ball in X
\bar{B}_{X} closed unit ball in X
$\llbracket x \rrbracket=\{t x: t \in \mathbb{R}\}$ linear space generated by vector x
2^{X} the set of subsets of X
$\operatorname{dim}(X)$ dimension of the linear space X
$\mathcal{P}_{\Omega}=\left\{\mu \in C(\Omega)^{*}: \mu(\Omega)=1, \mu \succeq 0\right\}$ set of probability measures over Ω
$\operatorname{cap}(A)$ capacity of the set A

Matrices and Vectors

< $\alpha, x\rangle$ value of the linear functional $\alpha \in X^{*}$ on $x \in X$
$x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}$ scalar product of two finite dimensional vectors $x, y \in \mathbb{R}^{n}$
A^{T} transpose of the matrix A
$\operatorname{rank}(A) \operatorname{rank}$ of the matrix A
$\operatorname{vec}(A)$ vector obtained by stacking columns of the matrix A
A^{\dagger} Moore-Penrose pseudoinverse of the matrix A
trace $A=\sum_{i=1}^{p} a_{i i}$ trace of the $p \times p$ matrix A
$A \bullet B=\operatorname{trace}(A B)$ scalar product of two symmetric matrices $A, B \in \mathcal{S}^{p}$
$A \otimes B$ Kronecker product of matrices A and B
$\lambda_{\max }(A)$ largest eigenvalue of the symmetric matrix $A \in \mathcal{S}^{p}$
$A \succeq 0$ ($A \leq 0$) means that the matrix $A \in \mathcal{S}^{p}$ is positive (negative) semidefinite
I_{p} the $p \times p$ identity matrix

Operations on Sets

$\operatorname{Sp}(S)=\mathbb{R}_{+}(S-S)$ linear space generated by the set $S \subset X$
$\mathbb{R}_{+}(S)=\{t x: x \in S, t \geq 0\}$ cone generated by the set $S \subset X$
$\operatorname{cl}(S)$ topological closure of the set $S \subset X$, if X is a Banach space, closure is taken with respect to the norm (i.e., strong) topology
$\operatorname{int}(S)=\{x \in S$: there is a neighborhood V of x such that $V \subset S\}$ interior of the set S
$\operatorname{bdr}(S)$ (also denoted $\partial S)=\operatorname{cl}(S) \backslash \operatorname{int}(S)$ boundary of the set S
$\operatorname{ri}(S)=\{x \in S:$ there is a neighborhood V of x such that $V \cap(x+L) \subset S\}$
(where $L:=\operatorname{cl}[\operatorname{Sp}(S)]$) relative interior of the convex set S
$\operatorname{core}(S)=\left\{x \in S: \forall x^{\prime} \in X, \exists \varepsilon>0, \forall t \in[-\varepsilon, \varepsilon], x+t x^{\prime} \in S\right\}$
$\operatorname{dist}(x, S)=\inf _{z \in S}\|x-z\|$ distance from the point $x \in X$ to set $S \subset X$
$\operatorname{Haus}(S, T)=\max \left\{\sup _{x \in S} \operatorname{dist}(x, T), \sup _{x \in T} \operatorname{dist}(x, S)\right\}$ Hausdorff distance between the sets S and T
$S^{\perp}=\left\{\alpha \in X^{*}:\langle\alpha, x\rangle=0, \forall x \in S\right\}$ orthogonal complement of the set $S \subset X$
$S^{\infty}=\{h \in X: \exists x \in S, \forall t \geq 0, x+t h \in S\}$ recession cone of the convex set S
$\sigma(\alpha, S)=\sup _{x \in S}\langle\alpha, x\rangle$ support function of the set S
$I_{S}(\cdot)$ indicator function of the set S
$\operatorname{conv}(S)$ convex hull of the set S
$\operatorname{diam}(S)=\sup _{x, x^{\prime} \in S}\left\|x-x^{\prime}\right\|$ diameter of the set S
$C^{-}=\left\{\alpha \in X^{*}:\langle\alpha, x\rangle \leq 0, \forall x \in C\right\}$ polar (negative dual) of the cone $C \subset X$, where X and X^{*} are paired spaces
$\operatorname{lin}(C)$ lineality subspace of the convex cone C
$a \leq c b$ order relation imposed by the cone C, i.e., $b-a \in C$
$a \vee b$ the least upper bound of a and b
$a \wedge b$ the greatest lower bound of a and b
$[a, b]_{C}=\left\{x: a \preceq_{c} x \preceq_{c} b\right\}$ interval with respect to the order relation " \preceq_{C} "
$G \Pi_{x} W$ mapping G intersects manifold W transversally at the point x

Tangent Sets

$T_{S}(x)=\lim \sup _{t \downarrow 0}(S-x) / t$ contingent (Bouligand) cone to the set S at the point $x \in S$
$T_{S}^{i}(x)=\liminf _{t \downarrow 0}(S-x) / t=\{h \in X: \operatorname{dist}(x+t h, S)=o(t), t \geq 0\}$ innertangent cone to the set S at the point $x \in S$
$T_{S}^{c}(x)$ Clarke tangent cone to the set S at the point $x \in S$
$\mathcal{R}_{S}(x)=\{h \in X: \exists t>0, x+t h \in S\}$ radial cone to the convex set S at the point $x \in S$
$T_{S}(x)=\operatorname{cl}\left[\mathcal{R}_{S}(x)\right]=T_{S}^{i}(x)$ tangent cone to the convex set S at the point $x \in S$ $T_{S}^{2}(x, h)=\lim \sup _{t \downarrow 0}(S-x-t h) /\left(\frac{1}{2} t^{2}\right)$ outer second order tangent set to the set S at the point $x \in S$ in the direction h
$T_{S}^{i, 2}(x, h)=\liminf _{t \downarrow 0}(S-x-t h) /\left(\frac{1}{2} t^{2}\right)$ inner second order tangent set to the
set S at the point $x \in S$ in the direction h
$T_{S}^{i, 2, \sigma}(x, h)=\liminf _{n \rightarrow \infty}\left(S-x-t_{n} h\right) /\left(\frac{1}{2} t_{n}^{2}\right)$ sequential second order tangent set associated with the sequence $\sigma=\left\{t_{n}\right\}$ such that $t_{n} \downarrow 0$
Σ set of sequences $\sigma=\left\{t_{n}\right\}$ of positive numbers converging to zero
$N_{S}(x)=\left[T_{S}(x)\right]^{-}$normal cone to the set $S \subset X$ at the point $x \in S$
$N_{S}(x)=\left\{\alpha \in X^{*}:\langle\alpha, z-x\rangle \leq 0, \forall z \in S\right\}$ normal cone to the convex set S
$P N_{S}(x)$ set of proximal normals to S at x
$P N_{S}^{\delta}(x)$ set of δ-proximal normals to S at x

Functions and Operators

$f: X \rightarrow \overline{\mathbb{R}}$ extended real valued function
$\operatorname{dom} f=\{x \in X: f(x)<+\infty\}$ domain of the function f
$\operatorname{gph} f=\{(x, f(x)): x \in X\} \subset X \times \mathbb{R}$ graph of the function f
epi $f=\{(x, \alpha): \alpha \geq f(x), x \in X\} \subset X \times \mathbb{R}$ epigraph of the function f
lsc $f(x)=\min \left\{f(x), \lim \inf _{x^{\prime} \rightarrow x} f\left(x^{\prime}\right)\right\}$ lower semicontinuous hull of f
$\operatorname{cl} f(x)$ closure of the function f
conv f convex hull of the function f
$\operatorname{lev}_{\alpha} f=\{x \in X: f(x) \leq \alpha\}$ level set of the function f
$f^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-f(x)\right\}$ conjugate of the function f
$\hat{f}_{\varepsilon}(\cdot)$ Moreau-Yosida regularization of the function f
$f \diamond g(u)=\inf _{x \in X}\{f(u-x)+g(x)\}$ infimal convolution of the extended real valued functions [$f, g: X \rightarrow \overline{\mathbb{R}}$]
$f \circ g$ composition of a mapping $g: X \rightarrow Y$ and a mapping (extended real valued function) $f: Y \rightarrow Z$, i.e., $(f \circ g)(x)=f(g(x))$
$\lambda^{\perp}=\operatorname{Ker} \lambda=\{y \in Y:\langle\lambda, y\rangle=0\}$ null space of $\lambda \in Y^{*}$
$\mathcal{N}(Q)=\{x \in X: Q(x)=0\}$ null space of the quadratic form $Q: X \rightarrow \mathbb{R}$
$A^{*}: Y^{*} \rightarrow X^{*}$ adjoint operator of the continuous linear operator $A: X \rightarrow Y$, i.e., $\left\langle A^{*} \lambda, x\right\rangle=\langle\lambda, A x\rangle$, for all $x \in X$ and $\lambda \in Y^{*}$
$\Pi_{S}(x)=\arg \min _{z \in S}\|x-z\|$ set-valued metric projection of the point x onto S
$P_{S}(x) \in \Pi_{S}(x)$ a metric projection of the point x onto S
$\Delta y=\sum_{i=1}^{n} \partial^{2} y / \partial \omega_{i}^{2}$ Laplace operator
$\delta(\omega)$ measure of mass one at the point ω (Dirac measure)
$\mu \succeq 0$ means that the measure μ is nonnegative valued
$\operatorname{supp}(\mu)$ support of the measure μ
$|\mu|$ total variation of the measure μ
$[a]_{+}=\max \{0, a\}$, for $a \in \mathbb{R}$
\forall for all, \exists exists

Multifunctions

$\Psi: X \rightarrow 2^{Y}$ multifunction (point-to-set mapping), which maps X into the set of subsets of Y
$\operatorname{dom}(\Psi)=\{x \in X: \Psi(x) \neq \emptyset\}$ domain of Ψ
range $(\Psi)=\Psi(X)=\{y \in Y: y \in \Psi(x), x \in X\}$ range of Ψ
$\operatorname{gph}(\Psi)=\{(x, y) \in X \times Y: y \in \Psi(x), x \in X\}$ graph of Ψ
$\Psi^{-1}(y)=\{x \in X: y \in \Psi(x)\}$ inverse multifunction of Ψ
$\lim \sup _{x \rightarrow x_{0}} \Psi(x)=\left\{y \in Y: \lim \inf _{x \rightarrow x_{0}}[\operatorname{dist}(y, \Psi(x))]=0\right\}$ upper set limit of the multifunction Ψ at the point x
$\liminf _{x \rightarrow x_{0}} \Psi(x)=\left\{y \in Y: \limsup _{x \rightarrow x_{0}}[\operatorname{dist}(y, \Psi(x))]=0\right\}$ lower set limit of the multifunction Ψ at the point x

Limits and Derivatives

$r(h)=o(h)$ means that $r(h) /\|h\| \rightarrow 0$ as $h \rightarrow 0$
$r(h)=O(h)$ means that $r(h) /\|h\|$ is bounded for all h in a neighborhood of $0 \in X$
$\nabla f(x)=\left(\partial f(x) / \partial x_{1}, \ldots, \partial f(x) / \partial x_{n}\right)$ gradient of the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at the point $x \in \mathbb{R}^{n}$
$\nabla^{2} f(x)=\left[\partial^{2} f(x) / \partial x_{i} \partial x_{j}\right]_{i, j=1}^{n}$ Hessian matrix of second order partial derivatives of the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at the point $x \in \mathbb{R}^{n}$
$D g(x): X \rightarrow Y$ derivative (Gâteaux, Hadamard, or Fréchet, depending on the context) of the mapping $g: X \rightarrow Y$ at the point $x \in X$
$D^{2} g(x): X \rightarrow \mathcal{L}(X, Y)$ second-order derivative of the mapping g at the point x
$D^{2} g(x)(h, h)=\left[D^{2} g(x) h\right] h$ quadratic form corresponding to $D^{2} g(x)$
$D_{x} g(x, u)$ partial derivative of the mapping $g: X \times U \rightarrow Y$
$g^{\prime}(x, d)=\lim _{t \downarrow 0}[g(x+t d)-g(x)] / t$ directional derivative of the mapping g :
$X \rightarrow Y$ at the point x in the direction d
$f_{+}^{\prime}(x, d)=\lim \sup _{t \downarrow 0}[f(x+t d)-f(x)] / t$ upper directional derivative of the function $f: X \rightarrow \overline{\mathbb{R}}$
$f_{-}^{\prime}(x, d)=\liminf _{t \downarrow 0}[f(x+t d)-f(x)] / t$ lower directional derivative of the function $f: X \rightarrow \overline{\mathbb{R}}$
$f^{\prime \prime}(x ; d, w)=\lim _{t \downarrow 0}\left[f\left(x+t d+\frac{1}{2} t^{2} w\right)-f(x)-t f^{\prime}(x, d)\right] /\left(\frac{1}{2} t^{2}\right)$ second-order directional derivative of the function f
$f_{f}^{\downarrow}(x, h)=\mathrm{e}-\lim \inf _{t \downarrow 0}[f(x+t h)-f(x)] / t$ lower directional epiderivative
$f_{+}^{\downarrow}(x, h)=\mathrm{e}-\lim \sup _{t \downarrow 0}[f(x+t h)-f(x)] / t$ upper directional epiderivative
$f_{-}^{\downarrow \downarrow}(x ; h, w)=\mathrm{e}-\lim \inf _{t \downarrow 0}\left[f\left(x+t h+\frac{1}{2} t^{2} w\right)-f(x)-t f_{-}^{\downarrow}(x, h)\right] /\left(\frac{1}{2} t^{2}\right)$ lower second order directional epiderivative
$f_{+}^{\downarrow \downarrow}(x ; h, w)=\mathrm{e}-\lim \sup _{t \downarrow 0}\left[f\left(x+t h+\frac{1}{2} t^{2} w\right)-f(x)-t f_{+}^{\downarrow}(x, h)\right] /\left(\frac{1}{2} t^{2}\right)$ upper second order directional epiderivative
$d^{2} f(x \mid \alpha)(h):=\lim _{\inf }^{\substack{\prime ; 0 \\ h^{\prime} \rightarrow h}}\left[f\left(x+t h^{\prime}\right)-f(x)-t\left(\alpha, h^{\prime}\right)\right] /\left(\frac{1}{2} t^{2}\right)$ second order subderivative of the function f at the point x with respect to $\alpha \in X^{*}$
$\partial f(x)=\left\{x^{*} \in X^{*}: f(y)-f(x) \geq\left\langle x^{*}, y-x\right), \forall y \in X\right\}$ subdifferential of the function $f: X \rightarrow \overline{\mathbb{R}}$

Optimization Problems

$\operatorname{val}(P)$ optimal value of the problem (P)
Φ feasible set of the problem (P)
$\mathcal{S}(P)$ set of optimal solutions of the problem (P)
$L(x, \lambda)=f(x)+\langle\lambda, G(x)\rangle$ Lagrangian function of the problem (P)
$L^{g}(x, \alpha, \lambda)=\alpha f(x)+\langle\lambda, G(x)\rangle$ generalized Lagrangian function
$L^{s}(x, \lambda)=\langle\lambda, G(x)\rangle$ singular Lagrangian function
$\Lambda(x)$ set of Lagrange multipliers at the point x
$\Lambda^{g}(x)$ set of generalized Lagrange multipliers at the point x
$\Lambda^{s}(x)$ set of singular Lagrange multipliers at the point x
$\Lambda_{N}^{g}(x)=\left\{(\alpha, \lambda) \in \Lambda^{g}(x): \alpha+\|\lambda\|=1\right\}$ set of normalized generalized Lagrange multipliers at the point x
$I(x)=\left\{i: g_{i}(x)=0, i=q+1, \ldots, p\right\}$ set of active at x inequality constraints
$I_{+}(x, \lambda)=\left\{i \in I(x): \lambda_{i}>0\right\}$
$I_{0}(x, \lambda)=\left\{i \in I(x): \lambda_{i}=0\right\}$
$\Delta(x)=\{\omega \in \Omega: g(x, \omega)=0\}$ set of active at x constraints of $g(x, \omega) \leq 0, \omega \in$ Ω
$C(x)$ set of critical directions (critical cone) at the point x
$C_{\eta}(x)$ approximate critical cone at the point x
(P_{u}) parameterized by $u \in U$ optimization problem
$\Phi(u)$ feasible set of the parameterized problem (P_{u})
$v(u)=\operatorname{val}\left(P_{u}\right)=\inf _{x \in \Phi(u)} f(x, u)$ optimal value (marginal) function of $\left(P_{u}\right)$
$\mathcal{S}(u)=\mathcal{S}\left(P_{u}\right)=\arg \min _{x \in \Phi(u)} f(x, u)$ set of optimal solutions of $\left(P_{u}\right)$
$\bar{x}(u) \in \mathcal{S}(u)$ an optimal (ε-optimal) solution of (P_{u})
$L(x, \lambda, u), L^{g}(x, \alpha, \lambda, u)$ and $L^{s}(x, \lambda, u)$ Lagrangian, generalized Lagrangian and singular Lagrangian functions, respectively, of (P_{u})
$\Lambda(x, u)$ and $\Lambda^{g}(x, u)$ sets of Lagrange and generalized Lagrange multipliers, respectively, of $\left(P_{u}\right)$ at the point (x, u)

