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The class of homogeneous n—person constant sum games was introduced by VON

NEUMANN-MORGENSTERN [20]; as a solution concept they treated the v.N.-M.—

solution (or main simple solution). PELEG [8] discussed the kernel and nucleolus
within this framework. The general theory of non-constant sum homogeneous games
was developed by OSTMANN 8], ROSENMULLER [14], [15], [16] and SUD-
HOLTER [19]. Based on these results, PELEG-ROSENMULLER {12] discussed the
kernel (and other solution concepts) for homogeneous games without steps while
ROSENMULLER-SUDHOLTER [18] proved a reduction theorem for the nucleolus.
The present, paper provides the reduction theorem for the kernel: it is shown that the
kernel of a homogeneous game with steps equals the one of the game without steps
-obtained by reducing in a suitable way, that is, cutling off all players following the
largest step.



0. Introduction, notations; homogeneous games

This section is of an introductory nature. We will present our notation as well as a
short survey providing the necessary foundations from the theory of homogeneous
games.

Sections 1 to 4 are organized as follows. Section 1 introduces the notations for treating
the kernel and its relatives. Essentially we are dealing with the pre~kernel of a directed
game and, by showing that its elements are nonnegative, we eventually convince our-
selves that dealing with the kernel is sufficient in our present context.

In Section 2 we concentrate on a small problem that in most papers concerning the
kernel (or the nucleolus for that matter) is not explicitly mentioned: how to treat the
case that winning players are present. As one can expect, this case can be eliminated in
a straightforward way; however, it takes some meticulous arguing. For the correspon-
ding treatment with respect to the nucleolus the reader is referred to ROSEN-
MULLER-SUPHOLTER [18]. Now, as the existence of inevitable or veto-players can
be excluded in a rather eéasy manner, the following sections deal only with the case that
neither winning players nor veto~players, nor dummies are present.

Section 3 actually presents the main burden of .proofs: the technique of reducing the
kernel. More precisely, it is shown that in homogeneous games (with the above
mentioned restrictions) every element of the kernel has zero coordinates for all players
following the largest (first) step.

Finally, Section 4 collects the results and presents the main theorem. First we prove the
converse of the main theorem of Section 3, that is, the kernel of the game obtained by
properly reducing or truncating the game after the first step conlains elements which,
augmented by zero coordinates, yield kernel elements of the original game. Hence we
come up with the final result that the kernel of a game with steps equals the kernel of
the reduced game.

To come back to the purpose of the present section, let us first introduce some notation
and then focus on the theory of homogeneous games.

The term homogencous game goes back to VON NEUMANN and MORGENSTERN
[20] ; they were dealing with constant sum games only and the main purpose to intro-
duce the topic seems to be the fact that homogeneous simple games have a nice VON
NEUMANN-MORGENSTERN~solution (the so called "main simple solution").

In a series of papers ISBELL (2], [3], [4] treated several aspects of homogeneous games
and later, PELEG [9], [10] studied the kernel and the nucleolus for this particular class
of games. However, all these authors were concerned with constant sum games only. In
1975 one of the present authors noticed that homogeneity is a useful concept to describe
extreme (convex or superadditive) games (cf. ROSENMULLER [13]) and subsequently
he tried to obtain an overview over the structure of a set of weights admissible for
constructing homogeneous games (cf. ROSENMULLER [14], [15]). However, it was
OSTMANN (8] who first found out that a homogeneous game has a unique minimal
representation. An alternative definition was given by ROSENMULLER [16] (this
works also in the case of countably many players cf. [17]). In the next step
SUDHOLTER [19] introduced the theory of the “incidence vector" showing that a
homogeneous game is equivalent to an integer vector describing the minimal lengths of
a certain class of minimal winning coalitions.

This series of papers was dealing with a general and nonconstant sum case which, as it
turned out, was much richer than the constant sum structure. In particular, it con-
tained the unique representation theorem of VON NEUMANN~ MORGENSTERN as a
simple case of OSTMANN’s general existence theorem for the minimal representation.
S0 far, however, these papers were only concerned with describing the structure of
homogeneous games.

The first attempt to capitalize on the new representation theory with respect to elabo-
rating solution concepts was made by PELEG-ROSENMULLER {12]. For the general
homogeneous weighted majority game "without steps" they discuss the least core, the
nucleolus, and the kernel and show their close relationship with the unique minimal
representation. At this stage it was clear that all w:mEEm in this direction would
necessarily call for some version of a reduction theorem: as SUDHOLTER {18] has
shown, homogeneous games in general and homogeneous games without steps can be
brought into a one to one correspondence by adding just one player. On the other hand,
the fact that steps play a very dominant role in the homogeneous game leads one to
believe that concepts like the nucleolus and the kernel, which react very sensitive to the
fact that "steps rule their followers", should somehow give a considerable paéiw.ma to
players preceding the steps of a game.

Indeed, it turned out that the nucleolus vanishes after the first step and hence a compu-
tation of the nucleolus of an arbitrary homogeneous game can be reduced to the compu-
tation of the nucleolus of the reduced game which is obtained by cutting off the players
after the first step ([18] ).



‘The present paper is designed to show the same property for the kernel, Eventually we
will come up with the Hmmc:. that the kernel of a homogeneous game with steps is essen-
tially computed by the kernel of the homogeneous game without steps which is obtained
by :csnm.s:m the players following the m:z step. Note that the techniques of the

present paper and those presented in [18] are quite Emmhmi In [18] it is shown that.

the system of minimal winning coalitions of a homogeneous game with steps cannot be

weakly balanced and then provide an induction argument for the vanishing of nucleolus

coordinates after the first step. This procedure rests heavily on SUDHOLTER’s theory
of the incidence vector \QH& ) . ‘

~The Emmmi mpbe, ﬁmo rests on ﬁmch: NBE_Q:% producing the ._Enamnnm ﬁéoﬂ__.
Bit we do not make use of the uagnma:mmm of the system of minimal winning -coali-
tions (see the results of [12] for the case of games without steps). Instead it is seen that
mcasgaw many S::B& §==Em coalitions with maximal excess can be produced in
order to am,mnBEm 36 mgva of :5 wm:é after the largest step. H»Em the . proofs
Eoﬁ%n :_ E& and in §m Emmmi version are 8:%58@ Samvmamﬂz nevertheless it
is of course clear that our present results -induce that s:w :;28:; ‘has ccordinates
§am~==m wzwn z& mn_ﬁ 28 om a uoaomgmocm game.

We now start introducing our notation.

Let I = ? 2 w.:.w ‘denote the universe of EE\Q%. mccmmg Om E are nmzmm 89583.
S%}E? are %mo_a Sﬁmm of coalitions of the 5»5

Cfab) = {iel]aci 3 wr el S ..ICV

swma a,b € M. The grand coalition is some a;::@:?& ::mz&_ b EmaoEEﬁ& we
use = {Lin] . Next,

P=P@)={S]S .m_s

and, if T P
viPaRy@=0 (3)

is a EmEz:m E_m Sn§§ (or Q_Bpﬁgms& 35&83 ‘then- Bw é isa game.

In most cases the nature of {2 and P is clear, so we call v a game as well. v is SSE«_ if
: P — {0,1} holds true.

F order to simplify the :o:;BP we sﬁnm m Ui Sﬁ.mma of SU 3 ete. for SEP Ea
€2 S+ TandS$ + i denotes disjoint unions (ie. § + T=SUTIfSNT = fetc.): =

Given a game, the desirability relotion is a binary relation on players (only, it can be
considered on coalitions as well). Player i € Qis more desirable than player j € () (written
% )it
v(S+i) 2 v(8+j) (4)
forall SeP, SN {i,j} =0 IHi~j(ie.i}jand ki), theniand jare equivalenior of the
same type.

A game is ordered if } is complete and directed if the ordering coincides with enumera-
tion, i.e., if
i< jimpliesi}j. (5)

Thus, in a directed game the "strong” "more desirable" or "large" players are first in
enumeration (or "index"). If a game is obviously ordered, we will always tacitly assume
that it is directed since this can be enforced by just renaming the players.

We write
8) =max {i | i €8} (6)

for § €P, sometimes calling this the length of coalition § (counting starts at 1 €M) ~
but note that in a directed game, {5) is also the "weakest", "smallest" or "last" player
of coalition S.

Let us now turn fo simple games.

Given a simple game v, W = W(v) = {S€P | v(5) = 1} is the system of winning coali-
tions while ‘
Wn = Wo(y) = {SeW | iavu,omcnﬂmﬁ (M
is the system of minimal winning coalitions ("min—win coalitions").
o it €, i iam($)= T my(SEP
A vectorm = AE—vﬁums.v is tantamount to a function on P via m(8) b i(SeP)
(thus, it is a non-simple "game") and hence called a "measure" (m is additive). Games
and in particular measures, may be restricted on subsets T €, the notation is <_.H, or

a_-H_ ; €8

it

v(TNS) (SeP(fy)

<__H,Amv
Ws)  (SeP(T); (®)

jeﬁmv
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the version living on P(§2) and the one living on P('I') are not distinguished. We tolera
v _ s

If m is a measure and A > 0, then (m;A) is a representation of v if
1 m(§) 2 ) )
M= 0 m(S) <A

(o} w V=YV i i arti-
h wam true, in ﬁm:m case we write b Oh course, —ﬂﬂmmmn hm@ﬂmmmn—wpa_Obm are Om p
y

cular interest.

A measure m is said to be homogeneous w.r.t. A €R,, (written "m hom A"), if, for any T
€ P with m(T) > ), there is § C T with m(S) = A,

A game v is homogeneous if there exists a representation (m;A) with m hom X and v()
= 1. (The definition is due to VON chz,»zzxw\_OWQmZmHmmz [20]).

; : X
Clearly, a representable game is always ordered, thus in accordance with our 8.892

. . a
above cwm tacitly assume that representable games are directed. That is, there exists
Bvummmimaos (m;A) such that i < jimplies mg » my (i,j € Q).

While players are ordered according to "size", coalitions wwm oamuwm Wﬁ”ﬂpﬂ”ﬁﬂ%
In particular, the lez—maz min—-win coalition is the lexicographica ,%:oz oy 1
winning coalition; in a homogeneous game with roEomm:mocwywmmeg m\ 13_ ploo
coalition is denoted by S*) (an interval with measure m(S™) = A). We w.

#(s™).

Player i € Qis a dummy if v(S U i) = v(8) for all § € P; this notion is not restricted to
simple games. All dummies are equivalent or of the same type).

o mopeiin . gn - apain all
Returning to simple games, player i € is winning if v({i}) = 1 (i.e. {i} € W™); again al
winning players are equivalent.

Thus dummies and winning players provide two particular types; of course types
establish a decomposition of §2.

ich i i oge-
There is a second decomposition of  which is fundamental in the case of a :oa_m.
aln
neous game, this is the decomposition into sets of players of equal character. To exp
' ¥
the nature of this notion, let us focus on a homogeneous game.

There are three characters to be attached to players w.r.t. homogeneous game called

"dummy", "sum" and "step", The dummy character is the dummy type as explained
above, so let us attempt to define the other two.

To this end, fix a non-dummy player i € ) = [1,n] and consider the minimal length of
all min-win coalitions containing i, say

&)= min {{S) | 55 i, 5 € wn}, (10)

The domain of i is
Clt) i [80 4. 1, g, (1)

Now, player i is a sum ("his character is sum") if

m; ¢ m(C), (12)
otherwise i is a step.

A sum may be replaced in af least one min-win coalition by 2 coaliti

players, his weight being exactly the sum of the weights of the smaller players (homo-
geneity is essential here).

On the other hand, "steps rule their followers", m.m.,, whenever a smaller player is g
member of a min-—win coalition, any preceding step is also a member,

Thus O decomposes into three subsets of characters; dummy, sum, and step. (Note that
a winning player may be sum or step). A game may have no dummies or sums (e.g. the
unanimous game of the grand coalition) but steps are always present.

The following remark collects some facts from the theory of homogeneous games. The

details can be found e.g. in OSTMANN (8], ROSENMULLER [16] and SUDHOLTER
[19].

Remark 0.1:

1. The smallest non-dummy player s always a step. If v js constant sum, then this is

the only step. .Ho. simplify matters, we say visa ?osomm:mg& game without steps
if the smallest non-dummy is the only step.

2. A homogeneous game v has a unique minimal representation. (i.e., an integer valued
(m;X), representing v such that m(f) is minimal among all integer representations —



this (r;A) is homogeneous,) For games without steps and dummies, every represen-
tation is a multiple of the minimal one.

3. Let again 8™ be the lex-max min-win coalition, then, for j € ™) the domain is CW)

= [{(S™) + 1, n}. The steps in 5™ are exactly the inevitable (or veto-) players. If

all players in §() are steps, then v is the unanimous game of S®) (with minimal
representation (;A) = (1,...,1, 0,...,0; A).

4. The sums in S®) determine the nature of the smaller players: the satellite game of a
sum j€ SO is

(CW), P(CW), vi)

where v¥) is represented by ?J oty mj).

For every sum j € S®), vi) js a homogeneous game (The BASIC LEMMA). i >
{5™) is a sum w.rb. v il 1 s a sum w.r.t. at least one vl i is a dummy if i is a
dummy in every vl), and i is a step in any other case.

5. 'In every homogeneous representation (m;A) of v, sums of the same type have ::W

same weight. Steps of the same type may have different weights, but then they
appear or do not appear simultaneously ("as a block") in every min-win coalition.

6. The procedure described in 3. suggests that sums may be replaced in the lex—max
min-win coalition S™) if the players following & = {S™) can muster enough
weight. This procedure may be generalized as follows. Let (m;)\) be the minimal
representation of a homogeneous game v = v§. Let S € W™ and let ¢ = {(S) again

denote the last player in 5. Suppose j €S is such that
[i€] €8, 8~j+ [t+1n) eW. (13)

Then jis ezpendable; we may replace him in 8§ by an interval of smaller players, thus
generating a coalition

pj(8) := 8 —j+ [(8) + 1,4] (14)
where t is uniquely defined by m([{S) + 1,t]) = mj. This procedure is based on the
BASIC LEMMA (ROSENMULLER [16] }, see SUDHOLTER [19].

On the other hand, let T € W™ and suppose that r ¢ T satisfies
fr+1, {T)] CT. (15)

Then r is the last dropout (denoted by © = r(T)) and there is a unique ' € [r+1, {T))
such that

HT) =T + 1= [,4T)] . (16)
is 2 min-win coalition. That is, ¢ inserts the last dropout and cuts off an appropriate
tail of T as to generate a min-win coalition. Thus, p; renders j to be the last dropout if
he is expendable in S. :

Clearly, if 1 is the last dropout in T, then (he is expendable in AT) and)
pAT)) =T, (17)

Similarly, if j is expendable in § then (he is the last dropout in #5(8) and)

Ppi(S)) = (18)

holds true.

We provide a few examples of homogeneous games which may be useful for the purpose
of illustrating the general theory developed in the following sections.

Examples 0.2:

For simpler reading we omit the brackets in a representation (m;A) and indicate the
semicolon by a *. The characters are indicated by s for sum, 7 for step, and d for
dummy,

Forn=11
* 33

221111 92222211
§ 5 5558§888s8T

is 2 constant sum game — hence a game without steps by convention, since technically
the smallest player is the only step. By omitiing this smallest player, we obtain for n =
10:
221111 9222221 * 33
5 S 56858588 T7TT
‘here the last two players are steps, but of different type. Note that, on the other hand,
of course all players with weight 2 are of the same type.

Next, for n = 8, consider
1210 532211 t-22
S ST S858S8ST ,
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were a step with weight 5 follows immediately behind the lex-max min-win coalition
SO — this example is treated in more detail in Example 3.7.

For n = 6 note the two very similar looking representations

543211 * 12
T8 8 TST

and
533211 * 11
TSSTST
which are nevertheless different ~ in both cases there is an inevitable (or veto—) player
and further steps present.

So far all the above examples are given by their minimal representation. For n = 15

252 252 56 56 56 56 28 28 9 955 5 2 2 * 672
T T S § 5§ 5 85 SSS8§SSTTCT .
is a homogeneous representation but not nimal one, which is

the mi
86 86 32 32 32 32 16 16 5 5 3 3 3
§88T

11 * 268,
T T 8§ 8§ 5 8§ § 8§ TT

Similarly,
176 70 70 31 29 10 442 2 2 1 * 240
T § 8 T T s5ssssrd

is minimally represented by
moﬁﬁmmmmw 110 7 )
T § 8T7rTrs58ss8s87d s

~ note that the two steps (weight 31 and 29) in the first representation are of equal
type, hence get the same weight in the minimal representation.

The largest homogeneous game appearing in reality we know of is the Thai parliament
of 1983, given by
92 73 56 24 18154321 * 145

which is a non-homogeneous representation of a homogeneous game represented mini-

mally by
* 40 .

B:-\?
wn o
w
~5 o
[
@ o
0 =
E

23 17 1
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1. Preliminary results about pre-kernel and kernel

We consider only games without dummies. This section serves to recall some definitions
and to prove some elementary properties of the pre-kernel and its relatives.

Defirition 1.1:

i .
= {xeRn | x(Q) = 1} is the set of ual:%ﬁa:e:& and F'= {xe.F* | x» 0} is
the set of pseudo—imputations, . )

We write Ty = {S e P | 1€S, j¢S}. Next, for S ¢ p and x €Rv, e(S,x) = v(8) - x(5) is
the ezcess of x at § (with respect to some game v).
Definition 1.2;
The mazimal excess of x € with respect to a game v is
#x) = p(x,v) = max e(S x):
i (Sx); (1)
also, we use for LjESyi4

8ij(%) = 83j(x,v) = max {e(S,x) | § ¢ Ty} . (2)

The 8«3%3&5« systems of coalitions reaching maximal excess are given by

D(x)= g ,v) = =
. x) (xv) = {SeP [ ¢(Sx) #x)} (3)

Zii(x) = Di(xv) = {S€Ty; | e(Sx) = sij(x)} . (4)
Next, let us recall the definitions for the pre-kernel and its relatives,
Definition 1.3:
Let v be a game,
1. The pre—kernel of v is given by

PE(v) = {x€ F* | 5ii(x) = s33(x) (LjeRisj}. (5)
2. The pseudo-kernel of v i given by
PaX(v) = {x €8] 5 i(%) < sji(x) or X=0 (i,jefi4j)}. (6)
3. The kernel of v a given by
F) = {xes* | x5 v (je®), 53(x) ¢ sjilx) or xj = vj (i,j€ Qi # j)} . (7)
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The kernel was introduced in DAVIS-MASCHLER (1}, see also MASCHLER-
PELEG-SHAPLEY (5], MASCHLER-PELEG [8],[7] and PELEG [9].

The pseudo—kernel has no satisfying game-theoretical interpretation. We will only use’
it temporasily to formulate the results of this section — this concept will not be
mentioned in the following section. In fact, the aim of this section is to show that in all
cases to be treated essentially all three concepts coincide.

Lemma 1.4: ("Equal treatment — monotonicity")
Let v be a directed game and x € £2 (v). Then the following holds true: .

1. 1fiwj, then xi = xj.
2. X32%32 ¢ 2 Xn.

Proof:

The pre-kernel respects the desirability relation; see e.g. PELEG [11], €H.5, Theorem
5.3.5 and Remark 5.3.10. g.e.d.

Lemma 1.5
Let v be a directed simple game (without dummies!). If x € P2% (v), then x 2 0.

i

Proof: ¢
1st STEP:

By Lemma 1.4., we have x; 2 -+ > Xp. Assuming xn < 0 we would like to end up with

a contradiction.

T'o this end let io be the last player with nonnegative coordinate of x, thus

Xi, 2 0> xin- : (8)

Note that player n cannot be a winning player for otherwise (the game is directed!) all m
players would be winning, hence all would be of the same type — in which case xn < 0
and Lemma 1.4. are not compatible.

= 185

Now, fix a coalition § such that n €85 and
¢(S,x) = max {e(S,x) | n €5} .

The next two steps distinguish two cases according to whether 5 is winning or losing —
and in both cases we will eventunally end up with a contradiction.

2nd STEP: .
Assume § is winning. Necessarily we have
Tc.*.a. i mw va

for if some player of the interval is missing, adding him to S would increase the excess.

Next, § =  cannot occur: § has excess 0 and {n} has excess ~ xp > 0 {{n} is not
winning by the first step!), coniradicting the definition of §.

Thus, there is i € 3-S and by (8) and (9):

xi 2 0. (10)

Eaqumnoiwmﬁiﬁamﬁwinmi?v.m?nmxm%§A<V.£m8=movmwv_m«cm=aw
€ Tin such that ’

e(5,%) = sin(x) = sni(x) = (8 x) (11)
holds true.

However, § is losing (because n is not a member and adding him increases the excess for
any winning coalition}, and in addition (S —i) + n is & fortiori losing (i is stronger than
n, as our game is directed). Hence

e((§ - i) + n,x) = e(8,x) + xi - x5 > e(5,x) (12)
since xq < 0 and x; 2 0 by (10).

Now, we have the desired contradiction as (12) is opposed to the choice of w. manifested
in (11).

This finishes the 2nd STEP. .
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3rd STEP:
Assume now that S is losing. Clearly, § # Q. But we can state much more, namely
[Lio] ¢ 5. (13)
Indeed, if (13) s not true, then pick i € 0-5. By (8) clearly x; < 0. But ,
e((S-1) +1,x) = e(5,x) + x;~x;. > e(5,x) (14)

again using (8) this contradicts the definition of §. Hence, (13) is verified.

Next, pick j€[1, io] ~ S and let § € T}, be such that
e(8,x) = sjn(x) = snj(x) = e(5,x) (15)
(this corresponds to (11)). .

Again, § has to be losing by the same argument as above (n is no member!) and once
more the fact that (S5=j) + n is losing (j is stronger than n) yields a contradiction, since

e((5-j) + n,x) = e(8,x) + xj - xn > e(§,x) (16)
is incompatible with the definition of § in view of (15). q.e.d.
Lemma 1.6:
Let v be a directed simple game (without dummies). If x € P4% (v) and i # j, then 8ij =.
Sji
Proof:

Let x € P44 (v) and let i # j. Assume, per absurdum, that 8ij(x) > sji(x). Now, as
x € P45 (v) we have x;j = 0. Choose S € T such that

e(5,x) = s;j(x) (17)
and t €2 be given by
t =max {r| x>0} <n (18)

We are going to discuss two cases, both of which end up with a contradiction, proving
" our Lemma.

15t CASE: (1,4] ¢5.
In this case, pick k €[1,t] ~§ and § € T); with
e(5,x) = sii(x).

~ 15~

Note that xx > 0 implies sjk(x) ¢ sxi(x). Thus

&(5,%) = ski(x) 2 sik(x) 2 e(5,x) . (19)

as § € Ty
Now, if § is winning, then so is § U j, hence

e(SU jx) = e(8,x) > e(§,x) = sij(x) > sji(x) (20)

contradicting the fact that § U je Tji. On the other hand, if § is losing, then e(§,x) < 0
ask €85, thus

0> e(S,x) 2 e(5x) = s1j(x) 2 e({j},x) = - x; = 0. (21)
2nd CASE: [1,4] ¢8.
In this case x(8) = 1 and
e(5,x) = sji(x) > s;i(x) 2 e({i}x) 20 =1-x(5) 2 ¢(5x) (22)
which yields a contradiction. q.e.d.
Corollary 1.7:

Let v be a directed simple game (without dummies). Then
L 2K (v) = X (v).

(3]

. If v has no winning players, then

PaF(v) = P (v) = K (v).

8. If v has no winning players but k inevitable (or veto-) players, then
P (v) = P (v) = F(v) = (}, 0005t 0,...,0).

(—
k
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2. How to avoid winning players

Within this section we shortly deal with the case that winning players are present. A
priori, this is not excluded for a homogeneous game ~ we may have several players i
with weight m; = X However, as we are going to show, the pre—kernel of such a game
and the pre-kernel of a game obtained by "omitling" the winning players in a suitable
way are closely related. Of course, the advantage of the second game is that it is trivial-
ly "weakly superadditive" and hence the kernel and the pre~kernel coincide.

Let v be a directed simple game and let

& =max{i €] {i} € Wm} (1)
be the smallest winning player (max ¢ = 0).
Consider the decomposition of Q into the winning players and the rest

Q=[1,8] + [+1,0] =: O + O (2)
and the corresponding restrictions

<¢u<~§ and iuq_s_. (3)
It is easily verified that v(- ) = max(vo(- ), vi(:)).

In order to exhibit the relationship beiween the pre~kernels of v, v0 and v!, some trivial
cases may be excluded.

E.g., if O is losing (w.r.to v), then all members of ©; are dummies, v! is identically 0
and v0 equals v (up to omitting the dummies — that is, depending on which version of
the restriction is favored).

Thus, the pre—kernel of v is (4 ,..., £, 0,...,0). Similar observations are due if Q = @ or

mw_ = &

Theorem 2.1:

Let v be a directed simple game (on 0 = {L,n}). Let x denote the smallest winning
player and let v0 and v! be defined by (2) and (3). Assume 2 # 0 #4.
If %€ 2% (vi) and

@ := min {X(5) | S € W(v)} (4)

w21

then
- — - - - -
3= o ( &...,a, RistyorrXn) (5)

is an element of 2% (v).

Proof:

We have to show that 8ij(Z) = 5;i(z) for all i, jeq Naturally, this goes by distin-
guishing all cases according to whether i and J are winning players or not.

15t CASE:

Ii, jeQy, then 74 = Zj; hence s;j(z) = §ji(2) is trivial,

2nd CASE:
Let i €9 and j€Qy. First we have

” = a
w&.msv = 1= Zi= 1 e, Amv
RO+ |

On the other hand, as % ¢ Zoy (v1), there is § € W(v1) such that j €S and %(5) = a
Clearly

(F) =1 X(S)_, & y
5i(2) = 1 !wm = 1= =52). ("

3rd CASE:

Now consider the case that i, JES.
Now, if v! has no inevitable {or "veto"-) players, then 5ij(2) = e(5,5) and
8ji(2) = (T,z) for some §, T € W(v1). Hence 5ij(2) = sj5(z). :

If vt has inevitable players, then the same argument holds true if i and j both are not
inevitable. ,

If both are inevitable, then %; = %; (Theorem 1.1.) and hence %; = Zj and 5;() =
mZva.

Finally, if i .mm inevitable and j is not, then % = 0 = Zj. In this case actually

- (33
5ij(2) = 1 - = sii@), ged.
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Theorem 2.2:

Let v be a directed simple game with smallest winning player x and v% and v! be de-
fined by (2) and (3). Assume §% # 0 # 9. Let 7 € P&% (v). Then NB_V > 0 and

%o W..Erlm FeX (v1) ) (8)
2(h)

Proof:

By the absence of dummies {; contains a winning coalition, thus z(;) > 0.
Let & = {SCS | e(5,2)2e(T,2) (TC)} and § = ¢(S,2)for S€ F. Let i €S € .9 be
such that z; > 0. Then

§=1~%; (9)

since s,3(Z) = 81,(2). We distinguish the following cases:

(i) vthas no inevitable (or veto-) player.
In this case N {S | S€ &} = 0 since there cannot be a coalition S€ & with
§2{i€Qy | z; > 0}. Hence, if i,j € £, i # j, then co& mimv and s;ji(z) are
atiained by winning coalitions w.r.t. v!, thus s3() = sji( .

(if)  v!has veto players.
In this case N {S | S€ F} ¢ {i €9 | i is inevitable w.r.t. v!}, since there is
m € F with 045 #8 as long as not all players of v! are inevitable. Consequently
= 0 ifi €y is not inevitable and j = Zy for any inevitable players jk; thus &
is :6 unique member of P2¥ (v1), q.e.d.

Remark 2.3:

For the discussion in the following sections we will now always assume that no winning
players are present.
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3. The kernel for games with steps

This section is devoted to the task of reducing the (pre-) kernel of a homogeneous game
with steps to the one of a "smaller" game without steps. More precisely, we show that
coordinates of the (pre-) kernel vanish behind the largest step, thus one can restrict
oneself to computing the (pre-) kernel of the reduced game obtained by neglecting the
players following the first step.

By the results of SECTION 2, we may restrict ourselves to the case that no winning
players are present. Also we can clearly dispose of the case in which dummies are
present. And finally, in view of Corollary 1.7., we will assume that there are no
inevitable players.

A further reduction seems useful for notational convenience. Let v be a homogeneous
game with steps and let 7 = 7(v) be first (largest step). Next, let 7 be the smallest

player of 7's type. Then [r,7] appear in every min-win coalition either simultaneously
or not at all — they form a "block". Now, we shall assume that 7 = 7, i.e., the first type

of steps consist of one player only. Indeed, the following proofs have to be altered only
in an obvious way in order to be carried over to the case of an existing "block".

To simplify matters, we begin with

Definition 3.1:

1. A standard step game is a homogeneous game with steps, having no dummies, no
winning and no inevitable players, such that the first step is the only step of his

type.
2. Ifvis astandard step game then 7 = 7(v) denotes the first step.

3. If v is a standard step game, X € J¥ (v) and %, > 0, then (v,%) will be called 2
"standard situation".

4. 1 (v,x) is a standard situation then t = t(v) = max {i | %; > 0} denotes the
smallesi player with positive coordinate at %.

Of course, {or any standard step game the kernel and the pre—keruel coincide, so we will
mention the kernel only. Clearly, if v is a standard step game, % ¢ #(v) and x, = 0,
then x; = 0 fori > 7 by Lemma 1.4.
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Thus our aim is to show that for any standard situation (v,%) it follows that %3 =0
(i>r).

et us start out with some preparations,

Definition 3.2:

Let (v, %) be a standard situation. Let 7 = r(v) and t = t(v). Define
Moo= A(vE) = Wolv) N F(x),
M= {Se K]St} (1)
M= {8 4| SN[rt] =0}

1f we refer to a standard situation, then we will sometimes omit the argument X%, then
writing &, A, A *etc.

Remark 3.3:

Let (v,%) be a standard situation. If 8 € &, then there is i € S such that SN[1,i] € 4.
I.e., homogeneity ensures that dropping the smallest players (of largest index) results in
a min-win coalition and, as this procedure can but increase the excess, it will result in
an A —coalition.

The principle of "dropping the smallest players in a winning coalition yields to hitting
A" is part of the BASIC LEMMA (see [15] ), thus we shall refer to it as to the BASIC
PRINCIPLE.

Theorem 3.4:
Let (v,%) be a standard situation. Then A= A*+ A-and K*$0$ A~

Proof:
First of all, let us show that S € ./ cannot cut properly into [7,4]. Indeed, let SN [7,t] #
0. As S € Wm and "steps rule their followers" (SEC.0), we have 7€ S.

If, for some i €[r+1,t],1 ¢S, then S € A N Ty and (as &; > 0) there is §'€ P N Ty,
clearly 5 € W. Now, §’ contains some 5" € W™ and, if i ¢ 8", then e(S") > e(5’), which
is impossible. Thus, 8" € Wn ) T, — contradicting the fact that 7is a step and "rules his
followers".
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‘Thus, 5 € & will either contain {7,t] or be disjoint {0 this interval.

Next, since no veto players are present (and % > 0), it is clear that

M s=9, “ 2
Se @)

thus - #0. On the other hand, any i €S € /- yields S € & N Ti,. A min-win coalition
T0 €T, yields T0 € & N Ty, since %, > 0 and 7€ T?, thus TO € A *, q.ed.

Lemma 3.5:
There exists S € 4 * such that [7,{S)] CS.

Proof:

Pick § € 4 * and let r = £(S) be the last dropout of S. If r € [7,¢S)], then r ¢ [r,t] (since
S 2[r4]), thus %; = 0 and %; = 0 for all i withr < i,

Applying the operation ¢ to S which inserts r and omits smaller players (cf. SEC.0)
does, therefore, not change the excess. Also, ¢{S) € 4 *. We may continue this proce-
dure, until no dropout behind 7 is missing in S, q-e.d.

Remark 3.6:

In particular, the shortest coalition (the one of minimal length) in & * satisfies the
condition specified by Lemma 3.5. Clearly, the procedure applied in 3.5 will work in a
different context. Le., if we take § € . * with certain additional properties, then we
may frequently assume or conclude that [r,4(S)] CS, using ¢ to replace dropouts if
necessary. To this we will refer to as the FULL TAIL PRINCIPLE.

Now, in order to begin the discussion, it should be noted that we have already treated
one important, though not very enlightening case. This is the one in which inevitable
players are present, and of course Corollary 1.7 shows that elements of the kernel have
zero coordinates for all players following 7.

For, indeed, in a standard step game with inevitable players, r is an element of §®) =
[1,68], 7 is the only step in S and the only inevitable player (of course 7 = 1 in this
case).




-2~

For didactical reasons we shall now treat the case that r follows immediately behind
the lex—max min—-win coalition S®), i.e, 7 = £ 1. Although this case is subsumed
under the general proof provided for Theorem 3.14, studying this particular situation .wm
very enlightening. The proof of our main result is much simpler if 7 = &+1 and still
exhibits some structure of the general sitnation. We believe that it will help the reader
to follow the main exposition and hence we shall treat it in advance.

Example 3.7:
Let (m;)) = (12,10,5,3,2,2,1,1;22).

We identify coalitions with 0-1-vectors ("characteristic functions of coalitions") thus
clearly
™ =1 1 000000
12 10 0 0 0 0 0 0

and since both of them can be replaced, players 1 and 2 are sums. However, the coali-
tion of minimal length containing player 3 (weight 5) is

10111000
120 532000

and there is not enough weight among the smaller players in order to replace player 3 —
thus player 3is a step, that is 7= 7(v) = 3 =241 = + 1.

The reader may want to follow the proof of Lemma 3.8 viewing the above example.

Lemma 3.8:
Let (v,%) be a standard situation. Assume
=0+ (3)

Then %5 = 0 for all i > 7.
Proof:
18t STEP:
In this particular case S™) is the only min—win coalition not containing 7, thus

; K= {S), (4)
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2nd STEP:
The shortest min—win coalition containing 7 is
§ 1= (800~ &2 + [7,5] (5)

with suitable s > 7. All elements in [7+1,5] are sums, for otherwise they would be of
the same type as 7. Since S' is shortest containing them, they may be replaced by
players following s — without disturbing the min-win property, that is.

3rd STEP:
By (4), S™e¢ .H_mzz. N @, consequently, there is § ¢ H..n%;: .

By the BASIC PRINCIPLE, S € .4, thus S € 4+, By the FULL TAIL PRINCIPLE § )
[7,45)]. Now, £*)is the only player from S®) missing in 5 (since 7 cannot be replaced
by playars following s, no player i €[1,7-1] can be replaced by players following s) —~
thus § has the form

5= (5%9-2) + [r4S)
and (since both are min~win), § = 57,

In view of the 2nd STEP any i €[r+1, {8)] can be replaced by players to the right of
{(8) ~ but since t € §, these have zero £—coordinates. Hence %; = 0 (otherwise the excess
increases). Thus t = 7, g.e.d.

The general case, to be tackled by a series of auxiliary statements, is of course more
involved ~ but some flavor of the simple proof offered in 3.8 is always present.

For instance, note that §" = 5 as constructed in the third step has the largest dropout
possible for S € £ * and § obeying the FULL TAIL PRINCIPLE. As a result
ﬁwv = §(),

Our first aim is to imitate this idea on a more general basis. This is attempted by the
following Definition 3.9 and Theorem 3.10.

Definition 3.9:

Let (v,%) be a standard situation. Ummsm. ‘
M= {Se k| [r4S) CS), | (6)
f:=max {r(5) | S¢ .\.&:u... . (")

Note that 4 ** 46 by Lemma 3.5!
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Theorem 3.10:

Let § € 4 ** be such that r(5) = f. Then ¢(5) € 4 -and H5)) = 1. Therefore, if we put
As a consequence, we have , Ti=(T-8)+1T,
m. = m({£+1, 45)]). (8) then clearly T € W in view of (10) and (12).
Proof: . ©(S) ........ -
1st STEP: . S .. e
Since S€ T _ ., there is TeT;  such that T € A: use the BASIC PRINCIPLE. In view T _ 4 ?ss (s)) 7 (s)
of Theorem 3.4, mu @ _
Te- : (9)
20d STEP: , . . Fig.2 §, T and their derivates
We want to show that 4th STEP:
{(T)=1 - (10) Next, it is our aim to show that T as well as ¥S) have maximal excess.
holds true. To this end, we are going to show that [E+1, 7-1] N'T = . Assume on the
contrary that i €[f+1, 7=1] N T, then i separates 7 via T. Hence, there exists Indeed, because 5, T ¢ ./, we have .
TeTyN &. By the BASIC PRINCIPLE, we may assume that T € 4 holds true. . o(5) » (A3)) = e(5) - 2. + (1)
Moreover T € £ *as 7€ T and wlo.g. T € 4 ** by the FULL TAIL PRINCIPLE. But - B ’
then the fact that T < i < (T) contradicts the maximality of T (i.e. (7)). ) ) i (13)
Thus, we have indeed verified (10). oT) 2¢(T) =e(T)+ X ~x(I).
3rd STEP: . . It follows that necessarily all inequalities in (13) must be equations, that is
Define now ), Te s (14)
[i=[UAS)) + 1, 45)] . (11) (and x. = x(I)).
This interval serves to replace £ in §, thus . 5th STEP:
m. = m(T). : (12) Now T

+) has maximal excess,
*) contains £S), hence ;
[ I ) +) is a member of £ *,
o s v W t— ; *} contains [7,4T)],
Ko (3) a9 -) henceisin 4+,

) Therefore, T cannot have dropouts in [F+1, 7—

1], for thi i i
Fig1 Goalition § mality of ¥, e, {1}, ] his would contradict the maxi
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We conclude that necessarily "
I=[r+1, 45)]

must be satisfied. In view of (11), this means {¢(5)) = f; this is what we s»:”.ﬁw.%

prove. Clearly, 7 £ ¢(5) and thus ¢(§) € A - (by Theorem 3.4),

In Ohﬁwn to ﬁmcommﬂ vith our mun«uOm:Lnn— Ve —: no &.—.N. on Z—m; UFQCHw O». 505.»0@@5@0—5
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Theorem 3.11: o B
Let v be a standard step game. There exists a sequence of min-win coalitions
Sppeey S, € WD
with the following properties:
1. §;=5M

2. For every k €[1,...,7], the system
Sy :={Si | i€[lk], keSs}

is nonempty.
i ini A S; be the one
3. For all k €[1,...,7-1] , among all §; € Sy with minimal _mbmg,._m" i,

with minimal index, then

Ska = pu(S1 ).

Proof:

This follows from SUDHOLTER [19], Theorem 2.3, Definition 2.4; see also the formu-

1ation in [18].

Definition 3.12:

. inimal
1. Among all coalitions of 8, with minimal length, let 57 be the one which has minim

index, i.e., in particular
452

(16)
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2. Let ry <...< r; denote the dropouts of §7 (the last dropout is enumerated first since
© = ¢! will reestablish him; thus ry = 1(87). Write 0 =: Tae, To = 7 for conve-
nience,

Remark 3.13:
1

If ¢*(S") denotes the k'th iterate of ¢ applied to §%, @*%(S") 5 1y and ¥(S") has
smallest length among all min-win coalitions containing ry. Note that W57 is a
min-win coalition without dropouts. {See SUDHOLTER [19]).

g

If 8 > 7, then 741 is expendable in S. For, S' is then certainly a shortest
min-win coalition containing 741, If 741 were a step then 7 and 741 would never
be separated {"steps rule their followers"), hence — as 7-+1 differs in type from 7 -

7+1 has to be sum. As such he has to be expendable in the shortest coalition
containing him,

3. Consider a standard situation (v,%). Suppose that we can find § € 4+ such that ¢(§)
= {(57). We know that t = t(v) € § and - thus either ¢ = 7 ort> 7, 741 €8, and
7+1 is expendable in § by the argument presented above in 2. Replacing r+1 by
players behind ¢ will, however, increase the excess properly — thus we have necessa-
rly r = ¢,

That is: if there is § € & * with 48) = ¢S, then ¢ = 7!

This reasoning again is quite analogous to the one offered in the 3rd STEP of the
proof of Lemma 3.8.

Theorem 3.14;

Let (v,%) be a standard situation, Then Yv) = r{(v). That is, for any standard step
game, the coordinates of kernel payolfs vanish behind the first step.

Proof:

Let 5"and 0 = Tas) < Ty <...< 1y < 1y = 7 be defined by Definition 3.12; thus in parti-
cular 8* is a shortest coalition containing r and has smallest index in the family defined
by Theorem 3.11 among all coalitions with this property.

Next, choose 5 € & ** such that 1(8) = t (cL. (6), (7)), thus by Theorem 3.10 we know
that ((S) € A~ and @) = t.
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Now, fix k € {0,a] such thai )
tpsr e B & Bie (17)

Accordingly, we are going to distinguish several cases.

1st CASE:
Ifk = a,i.e., T ra, then we argue as follows:

In this case in view of ¢*(§") =S> (Remark 3.13.1) and {y(S)) = T (Theorem 3.10), it

follows that ¢(8) = >
Then clearly § = §7; and Remark 3.13.3 shows that t = 7.

So here, the argument is quite direct and the attentive reader will have observed that

Lemma 3.8 actually deals with this case.
In the following we may now assume that k < a.

2nd CASE:

Consider now the situation in which
ket £5 (18)

holds true. Observe that 1y £ ¢(S5), since rxy < T £ §; moreover
L (5Y) 2 1 2 T = £A(S)).

Thus we may draw the following sketch.

JERN——, W e«@
® ® = S
@ @ i i ,m !
P y )
Teen T o 0T €

® dropouts
B member

Fig. 3 5, 5" and their derivates
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Now, take (S) and *(S") into consideration. Both do not contain 1y, If we apply pto
¢*(87), then we obtain a shortest coalition such that ry, is expendable (Theorem 3.11).
Hence, ¢(S) cannot be shorter than ¢%(57), that is

dps)) =1 (19)

Since § 3 7, this can only mean that k
Remark 3.13.3 in order to conclude that ¢

]

1 and {5) = (S7). Again we fall back on

T :

3rd CASE:

Suppose that ry = T, then {(¢*(5")) = F. Again, as #(5)) = f, we must have k = 1 and
{5) = {S"). The argument now proceeds analogously to the 2nd CASE.

4th CASE:

It remains to consider the case that rxy € § and T < 1y, This is the only one that re-
quires a somewhat more elaborate argument.

Now, since § m.H_J:.m , there is T € N Tir, ;- Since T is minimally winning, this
+

coalition contains a "tail" [i, {T)] N T exactly replacing ry.;, thus
(T + ) N{L,i-1] € Wan(y)
and
4T) 2 4p(5M) 2 e (20)

since ¢*(5) is shortest such that ry is contained. (Theorem 3.11.)

We claim that T € . *. Indeed, otherwise (i.e., if T € ) {T) < 7 - since "steps rule
their followers" — and thus maﬂ =8 7f(T) a contradiction to the maximality of ¥ (i.e.,

).

Thus T € A *. By the FULL TAIL PRINCIPLE we may immediately assume that
Tess, (21)

i.e, [r4(T)] ¢ T. That is, T has dropouts only to the left of r.

Next, the definition of T together with the fact that T is a member of 4 ** directly

implies t(T) < f and ( since m([F+2,n] ) < MpMp g o+ WS my S Mgy )

4AT)) ¢ 1 . (22)
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Hence £(T) = ry4y, for otherwise

LAT)) 2 LH(S7) 2 1k > &

Therefore, we have only two alternatives: either
UAT)) = (s,
then k = 0 and 4T) = {S*) ~ a situation we know how to deal with via Remark 3.13.3,

or

UAT)) > Uy y(s")).

Then we come up with
m([f+1,n]) 2 m([F+1, {T)]

(by (22)) )
> m(S"N[F+1, {T)]) + mf
(again by (22))

2 mq + my

= My + Mreg + .00 F Emav
(by Theorem 3.10),
i.e.

m([48) + 1, n}) 3 m,. (23)

But (23) contradicts the fact that 7 is & step, q.ed.

4. The Reduction Theorem

Within this section we draw the conclusions and collect results in order to finally for-
mulate Theorem 4.5, the main theorem of this paper.

Definition 4.1;

Let v be 2 standard step game, r = 7(v). Let

= (my,...,m,) = S_Tul,

Dot

= A~m{r+1,n],

) = v

=]

W1 s the truncation of v at 7 or for short the truncated game.

If (v,%) is a standard situation, then the truncated game equals the reduced game (see
PELEG [11]. Definition 3.6.8; note that the pre—kernel has the "reduced game proper-
ty") - more precisely and more general;

Theorem 4.2:
Let v be a standard step game and % € J§ (v). Then
1. =0 Q VﬂHﬂTLY

2. 1, € (7).

This follows immediately from Theorem 3.14,

Remark 4.3:

It is important to note that the truncated game ¥ is a homogeneous game without
dummies; this has been shown in ROSENMULLER-SUDHOLTER [18], Lemma 3.7
(see also Corollary 3.9). In addition % is a game without steps. Note that truncation is
not always the same as reduction, in particular if we reduce "behind a sum", homoge-
neity may be destroyed! Note the different version of a truncation presented in [18] for
sums.
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"heor i rove
Naturally, we should set out for the "converse" of Theorem 4.2., i.e., we want to p

Theorem 4.4:
Let v be a standard step game and #") the truncated game. if
% = (RyyeoyKr) € K (7)), then X = (&), %, 0,...,0) € H(v).

Proof:

15t STEP: . )
We use ~ to indicate the quantities belonging to ¥"), e.g.,

g = {SeWr(et) = Wn | §(5,%) = ux,9) = i}

etc. It is not hard to see that

N{s1sedr=0,N{S[{seF}=0 ol

p=pi>0, (2)

holds true. Hence, fori#j,i€[r+1,n], j€{1,n]
8ij (%) = p = p (). (3)

Using the fact that % € J'(¥(), we have immediately
81§(%) = 85i(%) )
fori#j,i,j€{1,7]. Therefore, it remains to show thal

81j(%) = (%) (ie(t,7], je[r+1,n]) (5)

A further reduction is obtained by observing a&,
si(®) 2 swai(®)  (1€{L,7], ke[r+2,n]) (6)

so that presently all that remains to be shown is that
snafR) = u(x) i€ [1,7] , Q)
holds true.

2nd STEP:
Next we claim that it suffices to show that

St = 1= (%) _ (8)
holds true.
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To this end assume that, for some i < 7 we have Sirn(%) < p(%). Then we will immedi-
ately show that sn,; < g is a consequence.

Indeed, $174i(X) < p and $44; = g is incompatible as follows:

Pick S € PN Tryy. Clearly, i £ 5, hence 5:4(%) = su(®) = e(§) = 4 = . Since & € %
(7)), we find T € PN Ty, Eliminate players to the tight of T (smaller ones) from T. We
obtain a winning coalition, for 7 ¢ T and steps rule their followers. Hence, we obtain a
coalition, say T, with T7 € 2N Ty, ~ contradicting siqy < pt.

This shows that it suffices to prove (8).

3rd STEP:
There is no problem with the proof of (8) if x, = 0.For in this case

8y(X) = 3 (jeL,r-1]) (9)
and, consequently for all j € {1,7-1] it follows that

St 2 8jan 2 S =Fp=fi=p o (10)
holds true.
4th STEP:

Hence, we will now set out to prove (8) assuming %, > 0.

>=&owo§€ to Definition 3.2, define
M= {SE M| TES), K = {SE€ M| TES), (11)
such that = A *+ - and, as is easily verified, J* #0and 4~ $0
Similarly, copying 3.9, we put
K= (S et | [r,0S)) ¢S, (12)
I o= max {x(S) | S€ £}

Of course, the FULL TAIL PRINCIPLE ensures that 4 ** $0.

Referring to Theorem 3.11 and Remark 3.13 {in particular 3.13.3), we may now com-
plete the proof by producing some § € /A * with 45) = £S"). For again for such an §

either {(5) = 7 or 7+1 will be expendable without decreasing the excess.
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The construction can, however, be completed quite g&cmcsm@ to the one Emmwiww M:
the proof of Theorem 3.14. Whenever within the course of this proof wm.mm.ESMm .& ma %
to % being an element of J# (v), then, for our Em.awmi mSEmE the SL,.SQW ing Eom
duced by this argument is already available by X € & (w1, E.og that in t w nn”EmM ;
3.14 and the previous theorems, essentially only players preceding T are manipulated in
their role as dropouts.)

Theorermn 4.5:

Let v be a standard step game. Then

F(¥) = {(&0) | R€K (F)}.

‘
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