Essay 9

On Probabilistic Machines,
Bounded Rationality and
Average-Case Complexity

Nimrod Megiddo!

ABSTRACT. The analogs of pure, mixed and behavior strategies in the
context of algorithms are studied. It is shown that probabilistic machines
are more powerful than probability distributions over deterministic ones,
that best response may sometimes requires randomization, and that if na-
ture’s choices are computable then there exists a deterministic best re-
sponse.

1. Introduction

In traditional game theory, deterministic strategies are called pure, and
probability distributions over pure strategies are called mixed strategies. A
strategy which makes probabilistic choices at every decision point is called
a behavior strategy. It is well known that a mixed strategy is at least as
powerful as a behavior strategy and the two are of equivalent power if the
game has perfect recall [1]. Also, a best response to the opponent’s mixed
strategy can be played without randomization.

In recent years, there has been a growing literature on playing games
through computing machines (see, for example, [2]), attempting to under-
stand bounded rationality. On the other hand, complexity theory some-
times uses ideas from game theory (see, for example, [3]).

With some reservations, algorithms can be viewed as strategies, so con-
cepts similar to mixed and behavior strategies can be defined with respect
to algorithms. We show here that algorithms exhibit phenomena which are
quite different from the ones we know from game theory. As usual in the
theory of complexity, an algorithm 1s a procedure for solving a family of
problem instances rather than a single one.
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2. Models and results

Let M denote the set of all deterministic Turing machines M such that,
given any natural number n as input, the machine M computes an n-
bit number M (n). Let P denote the analogous set of probabilistic Turing

machines.?

THE BASIC GAME

The definition of the basic game considered here is inspired by the con-
cept of worst-case complexity of a computational problem. Player T (the
player) designs a deterministic algorithm for the problem, and player 11
(the adversary) picks inputs for this algorithm for each input size. Thus,
the player chooses a deterministic machine M € M, and the adversary
chooses a function A which assigns to every natural n, an n-bit number
A(n). The adversary then pays the player an amount C, = C,,(M, A) = 27,
if M(n) = A(n), and C, (M, A) = 0 otherwise.

It is trivial to see that the player cannot secure for himself any positive
payoff for any input size, since the adversary may choose A(n) # M(n) for
every n.

MIXED STRATEGIES

A mixed strategy is essentially a probability distribution over the determin-
istic strategies. If mixed strategies are allowed, then this game is played as
follows. The player chooses any probability distribution 7 : M — R, 1.e.,
m(M) > 0and ), 7(M) = 1. Suppose the adversary now chooses his
function A(n), knowing this probability distribution. The expected payoff
is evaluated with respect to =, 1.e.,

En = En(m,A) = £Co(M,A) = > a(M)Cp(M,A) .
Mem

We note that since the adversary knows 7, he cannot benefit from random-
izing his choice of the mapping A, i.e., for every n the adversary has an
optimal choice of a number A(n), namely, one with minimum probability.

Ideally, the player would like to choose a probability distribution over
M which would induce, for every n, a uniform distribution over the n-bit
numbers. Given such a probability distribution, the adversary would be

2A probabilistic Turing machine is one that can also flip a coin and read its
outcome.
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indifferent, and the value of the game would be 1 for every n. However,
such a probability distribution does not exist! The proof of the latter claim
is as follows. Let m be any probability distribution over M. Since M is
countable, there exists an M € M such that e = 7(M) > 0. Tt follows that
for every n such that 27" < ¢, the probability that the number M(n) will
be chosen is greater than 27" hence there exists another n-bit number &,
which is chosen with probability less than 27". Since the adversary knows
the distribution 7, he can find such a number &k, and choose A(n) = k.
Thus, for every such n, the value of the game is less than 1.

In fact, we can prove a much stronger result. Let é be any positive num-
ber. For any probability distribution = over M, there exists a finite number
K and machines My, ..., Mg € M such that

K

> oa(M)>1-56.

i=1
Let n be such that 2" > K. It follows that there exists an n-bit number k,,
whose probability is less than §/(2" — K). If the adversary chooses A(n) =
k,, then the limsup of the expected payoff, as n tends to infinity is no more
than 8. Since é can be any positive number, the limit is indeed zero!

Note that the actual sequence of choices of numbers computed by the
sampled deterministic machine is of course computable. The adversary can
choose a noncomputable sequence A(n). On the other hand, we have not
assumed that the probability distribution itself is computable. If we assume
the probability distribution is computable, and the adversary is given a
program that computes w(M) for every M, then we can also restrict the
adversary to choose computable sequences A(n); the expected payoff still
tends to zero since in this case there exists a program which identifies an
appropriate k, for every n.

It is interesting to consider the rate of convergence of the value to zero.
We now give an example. Given a natural number n, let m = 2". For
simplicity (and with no loss of generality), let’s change notation so that
the object of the game is: given m, produce a number from the set S, =
{1,2,...,m}. We first construct a sequence of machines M;, Ms, ... as fol-
lows. The machine M; computes a number k& € 5,, such that j = & mod m.
Let M; be chosen with probability

F—C

S
T

where ¢ > 1 is a constant and {(¢) = Y., i~ “. It follows that, given m, a

number k € S, is chosen with probability

=0
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The one with the smallest probability in S, is m itself:
Pm(m) = me(i+1) =m
i=0

The payoff is therefore, m!—¢, which tends to zero as m tends to infinity. By
choosing ¢ sufficiently small we can guarantee convergence at a polynomial
rate with any degree. Of course, slower convergence can be achieved by
choosing the w(M;) converging more slowly than any series of the form

(A

BEHAVIOR STRATEGIES

A behavior strategy is essentially a strategy that allows probabilistic de-
cisions at any decision point. This concept corresponds to the notion of a
probabilistic Turing machine in our game. Thus, if behavior strategies are
allowed, then the game is played as follows. The player chooses a proba-
bilistic machine M € P and then the adversary chooses a function A as
above. The payoff is now a random variable C,, = C,,(M, A) whose value
depends on the coin tosses of M, so its expected payoff is evaluated with
respect to this distribution.?

It 1s obvious that we have an optimal probabilistic Turing machine,
namely, one which for every n samples an n-bit number simply by writing
down n random bits. The value of the game is 1 for every n.

DISTRIBUTIONS OF INPUTS

We also consider games inspired by the concept of average-case complexity.
First, suppose nature moves first and selects for every n, any probability
distribution over the n-bit numbers. The player is then informed of these
selections and then chooses either M € M or M € P, depending on the
version being played. Next, for every n a number A(n) is sampled from
the probability distribution selected by nature, and the chosen machine
produces a number, so payoffs can be determined as above.

If the player is allowed to choose a probabilistic machine, then the one
discussed above guarantees the value of 1 for every n, regardless of nature’s
choice of distribution. However, if the player has to choose a deterministic
machine then the value may be less than 1. For example, even if nature’s
choices are deterministic, but the sequence A(n) is not computable, then
the player will get 0 for infinitely many values of n.

FMixtures of behavior strategies can also be defined.
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COMPUTABLE DISTRIBUTIONS OF INPUTS

We now claim that if nature’s choice of probability distribution is com-
putable; then the player has an advantage. The variant we consider is as
follows. Nature moves first and selects a Turing machine? which computes,
for every n, a probability distribution over the n-bit numbers. The player
is given the full description of the machine selected by nature and the game
proceeds as above.

In this special case the player can design a deterministic machine M
that analyzes nature’s choices for any value of n and computes the best
response to that probability distribution, namely, a number M (n) of max-
imum probability. This yields an expected payoff of at least 1 for every n.
Of course, nature can force the expected payoff to be not greater than 1.

3. Summary

To summarize, we have established the following facts, which are quite
different from what traditional game theory suggests:

1. Probabilistic machines are more powerful than probability distribu-
tions over deterministic ones.

2. Randomization may be necessary in order to respond optimally to a
known probability distribution chosen by nature.

3. If nature’s choice of probability distribution is computable, then there
exists a deterministic best response.

Acknowledgments: Thanks to Nathan Linial and other attendees of the
IMSSS Summer Workshop on Bounded Rationality, for stimulating discus-
sions on the material in the paper.
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