
NASA-CR-199514

LOW-LEVEL INTERFACES FOR
HIGH-LEVEL PARALLEL I/O

Nils Nieuwejaar and David Kotz

{nils,df k}<8cs . dartmouth; edu
Department of Computer Science

Dartmouth College, Hanover, NH 03755-3510

ABSTRACT

As the I/O needs of parallel scientific applications increase, file systems for multi-
processors are being designed to provide applications with parallel access to multiple GO
disks. Many parallel file systems present applications with a conventional Unix-like ^- (».
interface that allows the application to access multiple disks transparently. By tracing >H m 5-
all the activity of a parallel file system in a production, scientific computing environ- I >— CO
ment, we show that many applications exhibit highly regular, but non-consecutive O C O
I/O access patterns. Since the conventional interface does not provide an efficient z -3 °
method of describing these patterns, we present three extensions to the interface that
support strided, nested-strided, and nested-batched I/O requests. We show how these <Q

extensions can be used to express common access patterns. ^?
O

_J

1 INTRODUCTION 3
<

While the computational power of multiprocessors has been steadily increasing * Q^
for years, the power of the I/O subsystem has not been keeping pace. This im- -J a

balance is partly due to hardware limitations, but the shortcomings of parallel > -J (\i
file systems bear a large part of the responsibility as well. One of the primary j >
reasons that parallel file systems have not improved at the same rate as other ' w *"*
aspects of multiprocessors is that until now there has been limited information o I r-
available about how applications were using existing parallel file systems and ~* o "o
how programmers would like to be able to use future file systems. £ W^ .c

Mf JZ
fi at +>
ir> o 3
0 u- oo, E

i M V) +J
I UJ U

CC U ltJ
U < Q
1 U. *""
< oc
V) at
< H O



CHAPTER 1

In [12, 16], we discuss the results of a workload characterization study in which
we recorded all the parallel file-system activity on an iPSC/860 at NASA Ames'
Numerical Aerodynamics Simulation (NAS) facility. Over a period of weeks,
we traced the activity of several hundred applications (primarily computational
fluid-dynamics codes), which accessed over 60,000 files. Unlike previous studies
of parallel file systems, we traced information about every I/O request. Using
the same file-system traces, in this paper we examine how well the file system's
interface matched the needs of the applications. We then present two extensions
to the conventional interface that allow the programmer to make higher-level,
structured I/O requests. Finally, we present a more general interface that allows
the programmer to make more complex, structured requests. These extensions
will increase the amount of information available to the low-level file system
and enable substantial performance optimizations.

2 THE CONVENTIONAL INTERFACE

Many existing multiprocessor file systems are based on the conventional Unix-
like file-system interface in which files are seen as an addressable, linear stream
of bytes [2, 18, 14]. To provide higher throughput, the file system typically
declusters files (i.e., scatters the blocks of each file across multiple disks), thus
allowing parallel access to the file, reducing the effect of the bottleneck imposed
by the relatively slow disk speed. Although the file is actually scattered across
many disks, the underlying parallel structure of the file is hidden from the
application. The interface is limited to such operations as openQ, readQ,
write(), and seek(), all of which manipulate an implicit file pointer.

Experience has shown that this simple model of a file is well suited to unipro-
cessor applications that tend to access files in a simple, sequential fashion [17].
It has similarly proven to be appropriate for scientific, vector applications that
also tend to access files sequentially [15]. Our results, however, show that
sequential access to consecutive portions of a file is much less common in a
multiprocessor environment [16, 12, 19]. So, while the simple Unix-like inter-
face has worked well in the past, it is clear that it is not well suited to parallel
applications, which have more complicated access patterns. Indeed, it may well
be the case that the linear file model itself is an inappropriate abstraction in
a parallel environment. While our focus in this paper is the improvement of
the interface to a linear file model, the enhancement or outright replacement
of that model is worthy of further investigation.



Low-level Interfaces for High-level Parallel I/O

One common enhancement to the conventional interface is a shared file pointer [18,
20, 2, 9], which provides a mechanism for regulating access to a shared file by
multiple processes in a single application. The simplest shared file pointer
is one which supports an atomic-append mode (as in [13, page 174]). Intel's
CFS provides this mode in addition to several more structured access modes
(e.g., round-robin access to the file pointer) [18]. However, the tracing study
described in [12] found that CFS's shared file pointers are rarely used in prac-
tice and suggests that poor performance and a failure to match the needs of
applications are the likely causes.

3 ACCESS PATTERNS

To this point, most parallel file systems have been optimized to support large
(many kilobyte) file accesses. The workload study described in [12] shows that
while some parallel scientific applications do issue a relatively small number
of large requests, there are many applications that issue thousands or millions
of small (< 200 bytes) requests, putting a great deal of stress on current file
systems.

As in [12] we define a sequential request to be one that is at a higher file offset
than the previous request from the same compute node, and a consecutive
request to be a sequential request that begins where the previous request ended.
A common characteristic of many file-system workloads, particularly scientific
file-system workloads, is that files are accessed consecutively [17, 1, 15]- In
the parallel file-system workload, we found that while almost 93% of all files
were accessed sequentially, consecutive access was primarily limited to those
files that were only opened by one compute node. When files were opened by
just a single node, 93% of those files were accessed strictly consecutively (i.e.,
every access began immediately after the previous access), but when files were
opened by multiple nodes, only 15% of those nodes accessed the file strictly
consecutively.

We define an interval to be the distance between the end of one access and
the beginning of the next. While we found that almost 99% of all files were
accessed with fewer than 3 different intervals ([12]), that study made no dis-
tinction between single-node and multi-node files. Looking more closely, we
found that while 51% of all multi-node files were accessed at most once by each
node (i.e., there were 0 intervals) and 16% of all multi-node files had only 1
interval, over 26% of multi-node files had 5 or more different intervals. Since



CHAPTER l

0.8-

0.6-

0.4-

07-

tH

Not Including Consecutive

: Including Consecutive /

0 20 4b riO 80 l(io
% Accesses Strided

Figure 1 Cumulative distribution of node-files according to the fraction of
accesses that were involved in a simple-strided pattern. This graph covers both
the case where consecutive accesses are counted as strided (with an interval of
0) and the case where they are not.

previous studies [15] have shown that scientific applications rarely access files
randomly, the fact that a large number of multi-node files have many differ-
ent intervals suggests that these files are being accessed in some complex, but
possibly regular, pattern.

3.1 Strided accesses

Although files may be opened by multiple nodes simultaneously, we are only
interested here in the accesses generated by individual nodes. When necessary
to avoid confusion, we use the term node-file to discuss a single node's usage of
a file. We refer to a series of requests to a node-file as a simple-strided access
pattern if each request is the same size and if the file pointer is incremented by
the same amount between each request. This would correspond, for example,
to the series of I/O requests generated by each process in a parallel application
reading a column of data from a matrix stored in row-major order. It could
also correspond to the pattern generated by an application that distributed the
columns of a matrix across its processors in a cyclic pattern, if the columns
could be distributed evenly and if the matrix was stored in row-major order.

Since a strided pattern was less likely to occur in single-node files, and since it
could not occur in files that had only one or two accesses, we looked only at
those files that had three or more requests by multiple nodes1. Figure 1 shows
that many of the accesses to these files appeared to be part of a simple-strided

1 Although we only looked at a restrictive subset of files, they account for over 93% of the
I/O requests in the entire traced workload.



Low-level Interfaces for High-level Parallel I/O

800O

6000-

£ 4000-

2000-

0
0 203

Number of strided segments

Figure 2 The number of different strided segments in each node-file. We
have ignored segments of fewer than 10 accesses.

access pattern. Although consecutive access was far more common in single-
node files, it does occur in multi-node files. Since consecutive access could be
considered a simple form of strided access (with an interval of 0), Figure 1
shows the frequency of strided accesses with and without consecutive accesses
included. In either case, over 80% of all the files we examined were apparently
accessed entirely with a strided pattern.

We define a strided segment to be a group of requests that appear to be part of
a simple-strided pattern. Figure 1 only shows the percentage of requests that
were involved in some strided segment; it does not tell us whether the requests
are all part of a single strided segment that spans the whole file, or if each file
had many segments with only a few requests in each. Figure 2 shows that it was
common for a node-file to be accessed in many strided segments. Since we were
only interested in those cases where a file was clearly being accessed in a strided
pattern, this figure does not include short segments (fewer than 10 accesses)
that may appear to be strided. Furthermore, in this graph we did not consider
consecutive access to be strided. Despite using these fairly restrictive criteria
for 'strided access', we still found that it occurred frequently. Although Figure 3
indicates that most segments fell into the range of 20 to 30 requests, Figure 4
also shows that there were quite a few long segments. Furthermore, while the
existence of these simple-strided patterns is interesting and potentially useful,
the fact that many files were accessed in multiple short segments suggests that
there was a level of structure beyond that described by a simple-strided pattern.



CHAPTER 1

200000-

2c

| 150000-
s
•5
jj 100000-

z
50000-

n- , , , ! , ! 1 1
10 15

Number ol

20 25 30

Figure 3 The number of segments of a given length (including 'short' seg-
ments of 10 or fewer accesses). By far, most segments have between 20 and 30
accesses.

2500-

of
 s

eg
m

en
t

£ looo-

2 500-

I | I ,

500 1000 1500

Number of accesses

2000 2500

Figure 4 The tail of the segment length distribution shown in Figure 3.
There are quite a few very long strided segments.

3.2 Nested patterns

A nested-strided access pattern is similar to a simple-strided access pattern but
rather than being composed of simple requests separated by regular strides in
the file, it is composed of strided segments separated by regular strides in the
file. A singly-nested pattern is the same as a simple-strided pattern. A doubly-
nested pattern could correspond to the pattern generated by an application
that distributed the columns of a matrix stored in row-major order across its
processors in a cyclic pattern, if the columns could not be distributed evenly
across the processors (Figure 5). The simple-strided sub-pattern corresponds to
the requests generated within each row of the matrix, while the top-level pattern



Low-level Interfaces for High-level Parallel I/O

Compute Node # : 0 1 2 3 0 1 2 3 0 1

Column f t 0 1 2 3 4 5 6 7 8 9

Outer Stride

Inner
Stride

Figure 5 The columns of this 10x10 matrix have been distributed cyclically
across the 4 compute nodes in an application. The columns assigned to node
0 are highlighted. If the matrix were composed of 8-byte doubles and stored
on disk in row-major order, the I/O pattern would have an inner stride of 32
(4*8) bytes and an outer stride of 80 (10*8) bytes.

corresponds to the distance between one row and the next. This access pattern
could also be generated by an application that was reading a single column of
data from a three-dimensional matrix. Higher levels of nesting could occur if
an application mapped a multidimensional matrix onto a set of processors.

Table 1 The number of node-files that use a given maximum level of nesting.

Maximum Level
of Nesting

Number of
node-files

0
1
2
3

4+

469
10945

747
5151

0

Table 1 shows how frequently nested patterns occurred. Files with zero levels
of nesting had no strided accesses, and those with one level had only simple-
strided accesses. Interestingly, it was far more common for files to exhibit three
levels of nesting than two. This tendency suggests that many of the applications
in this environment were using multidimensional matrices.



CHAPTER 1

4 FILE SYSTEM INTERFACES

While it would be presumptuous to suggest that programmers find the con-
ventional interface burdensome when implementing applications that do such
regular I/O, it is likely to be inefficient. If an interface were available that
allowed an application to explicitly make simple- and nested-strided requests,
the number of I/O requests issued to the multi-node files we examined could
potentially have been reduced from 25,358,601 to 81,103 — a reduction of over
99% 2. Not only would reducing the number of requests lower the aggregate
latency costs (particularly for those applications that issue thousands or mil-
lions of very small requests), but recent work has shown that providing a file
system with this level of information can lead to tremendous performance im-
provements [11].

We introduce three new interfaces in increasing order of complexity and power.
While these interfaces are intended to be used in a multiprocessor file system
where files will be shared among multiple processes, we have not included any
primitives to explicitly control synchronization or file sharing. Such primi-
tives could certainly be implemented alongside these interfaces, thus providing
stricter semantics for them. Similarly, while we show only blocking calls, there
is no reason that a file system could not implement non-blocking versions of each
call as well. Finally, we anticipate that these interfaces will more commonly be
used by compilers or application-level libraries than by end-user programmers.
Therefore, we have striven for power and expressiveness rather than simplicity.

4.1 Simple-strided interface

Although most of the requests in the observed workload may be characterized
as simple-strided requests, file-system interfaces that allow applications to issue
such requests are rare. To our knowledge, Cray Research is the only vendor that
provides a strided interface, but it is currently not offered on their massively
parallel T3D machines [6].

2 This number should be regarded as an upper bound, as we do not have sufficient infor-
mation to positively determine whether an access pattern is caused by the limitations of the
interface or by the structure of the computation.



Low-level Interfaces for High-level Parallel I/O 9

The following interface allows applications to issue simple-strided requests:

bytes = read_strided(iid, buf, offset, record-size, stride, quant)

Beginning at offset, the file system will read quant records of record-size
bytes, and store them contiguously in memory at bui. The offset of each record
is stride bytes greater than the previous record's offset. The call returns
the total number of bytes transferred. Naturally, there is a corresponding
write_strided() call. The code fragment shown in Figure 6 illustrates how
this interface could be used in practice to distribute the columns of an M * N
matrix across N processors. We assume that each processor knows its rank
(between 0 and N — 1). In this case, the strided interface reduces the number
of calls issued by each node from M to 1.

4.2 Nested-strided interface

Although a simple-strided interface alone can dramatically reduce the number
of requests issued by an application, an interface that allowed an application to
issue nested-strided requests would further reduce the number of requests issued
and would introduce additional opportunities for optimization. The following
interface allows both simple- and nested-strided requests:

bytes = read_nested(fid, buf, offset, record_size, stride_vector,
levels)

The stride-vector is a pointer to an array of (stride, quantity) pairs listed
from the innermost level of nesting to the outermost. The number of levels of
nesting is indicated by levels. The individual record-size chunks of data are
read from file fid and stored consecutively in the buffer indicated by buf. The
call returns the number of bytes transferred. Naturally there is a corresponding
write_nested() call.

An example of the use of the nested-strided interface is shown in Figure 7. This
example illustrates how a node could read its portion of a three-dimensional
M * M * M matrix from a file when the matrix is to be distributed across the
processors in a (BLOCK, BLOCK, BLOCK) fashion. For simplicity, we have
again assumed that we have the proper number of processors to distribute the



10 CHAPTER 1

Sdefine SIZEOF.ELT sizeof(double)

int read_column(fid, a)

int fid;

double a[] ;

{

int bytes;

long long offset; /* 64-bit offset */

long stride;

/* The stride between requests is equal to the amount

of space needed to store H double-precision numbers. */

stride = N * SIZEOF.ELT;

/* Calculate this node's initial offset into the file. */

offset = mynumO * SIZEOF_ELT;

bytes = read_strided(fid, a, offset, SIZEOF.ELT, stride, H);

/* true iff I/O was successful */

return (bytes == H * SIZEOF_ELT);

Figure 6 An simple-strided request. N nodes each read a column from a
row-major M * N matrix.

data evenly. In this case that means we have N * N * N processors which we
will logically arrange in a cube with numbers assigned from left to right, and
from front to back (i.e., processor TV * N — 1 is at the bottom right of the front
of the cube and processor N * N is at the top left of the second plane of the
cube). Using the conventional interface, each node would have to issue (M/N)2

requests. Again, we have reduced the number of requests issued by each node
to one.

Although this code fragment looks complicated, it should be noted that it is
essentially a proper subset of the code necessary to request each chunk indi-
vidually (as is done in the traced workload), and is no more complex than in
any other general-purpose interface (e.g., MPI-IO [3] or Vesta [4]). It could
also easily be hidden in a higher-level library or generated automatically by a
compiler for a parallel language (e.g., HPF).



Low-level Interfaces for High-level Parallel I/O 11

tfdefine Q (M/N) /* Elements/proc in each dimension */
Sdefine ELTJSIZE sizeoi(double)
#define ROW-SIZE (M * ELTJSIZE)
Sdefine PLANE-SIZE (M * M * ELT.SIZE)

/* My location in the logical cube of processors. */
tfdefine MYJC (mynumO '/, H)
Sdefine MY_Y ((mynumO */. (N*N))/N)
Sdefine HY_Z (mynumO / (N*N))

int readjnyJblock(iid, a)

int fid;
double a[] ;

{
struct {

long stride, quantity;

} vector[2];

long long off; /* 64-bit offset */

long bytes, x, y, z;

/* The first matrix element of my block */

x = q * MYJC;

y = q * MY.Y;

z = q * MY_Z;

off = x*ELT_SIZE + y*ROW_SIZE + z*PLANE_SIZE;

/* Inner stride: The distance from one row to the next

within one plane of my block */

vector [0] .stride = ROW .SIZE;

vector[0].quantity = q;

/* Outer stride: The distance from the first row of one

plane to the first row of the next */

vector[1].stride = PLANE-SIZE;

vector[1].quantity = q;

bytes = read_nested(fid, a, off, (Q * ELTJSIZE), vector, 2);

return (bytes == (q*q*q * ELT.SIZE));

Figure 7 A nested-strided request. We assume M%N = 0.



12 CHAPTER 1

4.3 A Nested-batched interface

While we found that most of the small requests in the observed workload were
part of a strided pattern, there may well be applications that could benefit from
some form of higher-level request, but would find the nested-strided interface
too restrictive. For those applications, we introduce a nested-batched interface.

One common example of a batched I/O interface may be seen in the POSIX
lio_listio() function, which allows the user to submit a list of simple read()
or write() requests in a single operation [10]. While the POSIX interface is
very general, it does not provide a compact method of describing regular access
patterns. Since we have seen that most files are accessed in a regular fashion
we view this limitation as serious.

We have designed a new batched I/O interface that provides the generality of
the POSIX interface as well as the compact representation of regular patterns
provided by the nested-strided interface. The two data structures involved in a
nested-batched I/O request can be seen in Figure 8. The simpler of the two is
the request vector. The request vector is simply an array of requests, along with
a count of the number of requests. As in the POSIX interface, the application
submits the entire list of requests to the file system rather than submitting one
request at a time.

While the POSIX interface restricts the type of request to simple reads or
writes, we provide a richer set of options with our requestjt structure. First,
each request specifies the offset into the file from which to begin servicing
the request. This offset may be absolute or it may be specified relative to
the previous offset. Second, in addition to simple requests, the application may
choose to submit a strided request. That is, the application may specify that the
request is to be repeated a number of times (quant), and may specify the change
in offset between each request (stride). Finally, the requests themselves may
be vectors of requests, to allow nesting.

The ability to submit vectors of requests provides applications with the full
power and generality of the POSIX interface. The ability to make strided
requests and to use sub-vectors for requests provides applications with a com-
pact method of specifying regular patterns. In particular, they are able to make
nested-strided requests as well as more complicated requests. That this inter-
face is a proper superset of the two interfaces described earlier may be seen in
Figure 9, which illustrates the functionality of and relationships between the
three interfaces.



Low-level Interfaces for High-level Parallel I/O 13

struct requestjt {

long long offset;

short offset.type; /* ABSOLUTE or RELATIVE */

short subreq.type; /* SIMPLE or VECTOR */

long quant;

long stride;

union {
unsigned long size;

struct request_vec_t *sub_vec;
} sub_request;

};

struct request_vec_t {
int requests;

struct requestjt vector[];

Figure 8 Data structures involved in a nested-batched I/O request.

A simple example of when such an interface might be useful is shown in Fig-
ure 10. Unlike Figure 5, within a given row, the distance between one request
and the next is not the same. Indeed, the distance between the first two requests
is positive, while the distance between the second two is negative. Although the
overall access pattern is highly regular, the nested-strided interface is unable
to capture that regularity. Figure 11 shows an example of the code required
to make a batched request for this data. Again, the example assumes that the
matrix is laid out in row-major order on disk and that it begins at byte 0 of
the file.

As with the previous example, although the work required to set up a nested-
batched request may appear tedious, it is no more so than the work required
to issue requests for each piece of data individually using the conventional
interface. In addition, it would certainly be possible and appropriate to hide
some of this complexity from the end user by providing semantically higher-level
routines, which would generate the actual low-level request, in an application-
or domain-specific library.



14 CHAPTER 1

Simple-strided Nested-strided

Nested-batched

Figure 9 The relationships between the three proposed interfaces.

Column # : 0 1 2 3 4 5 6 7 8 9

Outer Stride

Per-row access pattern

Figure 10 One node wants to access the data in columns 0, 8, and 4 of this
10x10 matrix, which is stored in row-major order. While this request is highly
regular, it is too complex to be handled with a nested-strided request.

While this example illustrates the basic power of the interface, it does not
utilize some of the more subtle features of the interface. For example, the first
request in an inner request vector is allowed to specify its own offset. It may
specify an absolute offset, essentially overriding the stride imposed by the outer
request, or it may specify a relative offset. In this example (and, we expect, in
most cases), it specifies an offset relative to the offset determined by the outer
request. It should be noted that, although legal, a RELATIVE offset may not



Low-level Interfaces for High-level Parallel I/O 15

#define ELT_SIZE sizeof(double)

int read-my.columns(fid, a)

int fid;

double a[];

•C
long bytes;

struct request.t inner[3] = {

0, RELATIVE, SIMPLE, 1,

8*ELTJ3IZE, RELATIVE, SIMPLE, 1,

ELT.SIZE,

ELT.SIZE,

(-4)*ELTJ5IZE, RELATIVE, SIMPLE, 1, 0, ELTJ5IZE

struct request.vec.t inner_vec = { 3, inner >;
struct request.t outer = {

0, ABSOLUTE, VECTOR, 10, 10 * ELTJSIZE, Sinner_vec

bytes = read_batched(fid, a, ftouter);

/* cols * rows * size */
return (bytes == (3 * 10 * ELTJSIZE));

. Figure 11 An example of nested-batched I/O.

be well defined for the first request of an outer request vector if the underlying
file system does not support the notion of a file pointer.

While all three interfaces guarantee that after all the data is transferred it
will be in order in the buffer, the order in which the individual chunks are
transferred is not specified. This interface allows the file system the option of
transferring the data from the disk to the I/O node and from the I/O node to
the local buffer in the most efficient order rather than strictly sequentially. This
ability to reorder data transfers can be used to achieve remarkable performance
gains [11], and is a distinct advantage of this interface over any interface where
the user must request one small piece of data at a time, forcing the file system
to service requests in a particular order.



16 CHAPTER 1

5 OTHER UNCONVENTIONAL
INTERFACES

5.1 nCUBE

A file-system interface proposed for the nCUBE is based on a two-step map-
ping of a file into the compute-node memories [7]. The first step is to provide a
mapping from subfiles stored on multiple disks to an abstract dataset (a tradi-
tional one-dimensional I/O stream). The second step is mapping the abstract
dataset into the compute-node memories. The first mapping is done by the
system software, while the second mapping function is provided by the user.
The first function is composed with the inverse of the second to generate a
function that directly maps data from compute-node memory to disk. Their
mapping functions are essentially a permutation of the index bits of the data.

While the nCUBE interface is far more elegant and aesthetically pleasing than
our extensions, it does have several important limitations. The most serious
of these limitations is a direct outgrowth of its elegance: since the mapping
functions are based on permutations of the index bits, all sizes must be powers
of 2. This restriction includes the number of I/O nodes, the number of com-
pute nodes, the disk block size, the unit-of-transfer size, and, for some data
distributions, the matrix dimensions. Note that the nCUBE interface could be
built on top of our extensions.

5.2 Vesta

The Vesta file system [4, 5, 8] breaks away from the traditional one-dimensional
file structure. Files in Vesta are two-dimensional and are partitioned according
to explicit user commands. Users specify both a physical partitioning, which
indicates how the file should be stored on disk and which lasts for the lifetime of
the file, and a logical partitioning, which indicates how the data should be dis-
tributed among the processors. Not only does this logical partitioning provide
a useful means of specifying data distribution, it allows significant performance
gains since it can guarantee that each portion of the file will be accessed by
only a single processor. This guarantee reduces the need for communication
and synchronization between the nodes.

While Vesta provides a flexible and powerful method of specifying the dis-
tribution of a regular data structure across compute and I/O nodes, it too



Low-level Interfaces for High-level Parallel I/O 17

has limitations. Vesta seems ill-suited to problems that use irregular data,
where irregular is defined as anything that cannot be laid out in a rectangle or
that cannot be partitioned into rectangular sub-blocks of a single size. One of
Vesta's great strengths is its two-dimensional file abstraction, which allows pro-
grammers to specify layout information that will hopefully lead to performance
improvements. Unfortunately, this abstraction makes it difficult for Vesta to
share files with applications on other systems, and it increases the difficulty of
porting old applications to a new platform. This two-dimensional layout can
also adversely affect performance. The "horizontal" dimension of a Vesta file is
tied to the number of cells, which in turn is heavily related to the physical layout
of the file. This means that a fine-grain cyclic-cyclic distribution would require
many cells, which could result in a significant performance penalty. Again, this
interface could be built on top of the extensions we described above.

Neither nCUBE nor Vesta appear to provide an easy way for two compute nodes
to access overlapping regions of a file. Since many models of physical events
require logically adjacent nodes to share boundary information, this could be
an important restriction. This behavior can be seen in the file-sharing results
in [12], which show that most read-only files had at least some bytes that were
accessed by multiple processors. On the other hand, the same results show that
in many cases, the strict partitioning offered by nCUBE and Vesta may match
the applications' needs for write-only files.

5.3 MPI-IO

MPI-IO is a draft standard for parallel I/O from NASA's Ames Research Center
and IBM's T.J. Watson Research Center, which derives much of its philosophy
and interface from the MPI message-passing standard [3]. In MPI-IO, file I/O
is modeled as message passing. That is, reading from a file is analogous to
receiving a message and writing to a file is analogous to sending a message.
Just as MPI provides structured messages based on simple and derived types,
access to files in MPI-IO is based on etypes and filetypes. Like structs in C,
MPI's derived types and MPI-IO's etypes are constructed from simple base
types such as integers or floats. Filetypes in turn are structured collections
of etypes. Unlike structs or derived types, filetypes may contain holes as
well as data. Using the filetype as a template, these holes allow applications
to specify which pieces of data in a file are to be accessed and which are to
be skipped over. When multiple nodes in an application access a file, they
typically all share a common etype while each node has its own filetype, which
indicates which portions of the file that node will access. Through the proper



18 CHAPTER 1

combination of etypes and holes, filetypes may be used to generate the same
regular access patterns as the interfaces we presented above.

MPI-IO presents three compelling advantages. First, rather than being spec-
ified in bytes, I/O is specified in terms of the same data types programmers
use in their applications, eliminating the need to painstakingly calculate off-
sets into the file. Second, MPI-IO may well benefit from its association with
MPI, which shows signs of becoming the dominant message-passing interface
of the near future. Finally, MPI-IO offers the promise of providing a common
interface to parallel I/O across many different platforms. The primary disad-
vantage of MPI-IO is its unfamiliarity, particularly to those programmers who
are accustomed to Unix-like I/O. It remains to be seen whether or not this
interface will be embraced by scientific programmers. Finally MPI-IO has yet
to be fully implemented, and it is possible that design decisions that look good
on paper will not work in practice. It appears that MPI-IO could also feasibly
be implemented on top of a nested-batched interface.

6 CONCLUSION

We found that while many of the files used by the parallel scientific applications
in our traces did not exhibit the strongly consecutive access patterns typically
seen in uniprocessor and vector supercomputer file systems, they were still
accessed in a highly regular manner. We have analyzed the high-level structure
of these regular patterns and discovered that the Unix-like file-system interface
does not offer a way to describe that structure to the file system.

We have described several extensions to the conventional file-system interface
that allow programmers of multiprocessors to make I/O requests at a higher
semantic level. Although these extensions are intended to serve primarily as
low-level primitives for libraries, there is no reason why they could not be used
by end-user programmers as well. In our traced workload, the nested-strided
extension alone could potentially have reduced the total number of requests
made by over 90%, reducing aggregate latency, and given the file system the
opportunity to optimize the movement of data. These advantages are achieved
without abandoning the traditional notion of a file as an addressable, linear
sequence of bytes and without abandoning the traditional read()/write()
interface. This consistency with existing systems allows us to continue to use
'dusty-deck' applications and to easily transfer data between applications on
different systems.



Low-level Interfaces for High-level Parallel I/O 19

REFERENCES

[1] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and
John K. Ousterhout. Measurements of a distributed file system. In Proceed-
ings of the Thirteenth ACM Symposium on Operating Systems Principles,
pages 198-212, 1991.

[2] Michael L. Best, Adam Greenberg, Craig Stanfill, and Lewis W. Tucker.
CMMD I/O: A parallel Unix I/O. In Proceedings of the Seventh Interna-
tional Parallel Processing Symposium, pages 489-495, 1993.

[3] Peter Corbett, Dror Feitelson, Yarson Hsu, Jean-Pierre Prost, Marc Snir,
Sam Fineberg, Bill Nitzberg, Bernard Traversal, and Parkson Wong. MPI-
IO: a parallel file I/O interface for MPI. Technical Report NAS-95-002,
NASA Ames Research Center, January 1995. Version 0.3.

[4] Peter F. Corbett, Sandra Johnson Baylor, and Dror G. Feitelson. Overview
of the Vesta parallel file system. In IPPS '93 Workshop on Input/Output
in Parallel Computer Systems, pages 1-16, 1993.

[5] Peter F. Corbett and Dror G. Feitelson. Design and implementation of the
Vesta parallel file system. In Proceedings of the Scalable High-Performance
Computing Conference, pages 63-70, 1994.

[6] Cray Research, listio manual page, 1994. Publication SR-2012.

[7] Erik DeBenedictis and Juan Miguel del Rosario. nCUBE parallel I/O
software. In Eleventh Annual IEEE International Phoenix Conference on
Computers and Communications (IPCCC), pages 0117-0124, April 1992.

[8] Dror G. Feitelson, Peter F. Corbett, Yarson Hsu, and Jean-Pierre Prost.
Parallel I/O systems and interfaces for parallel computers. In Multiproces-
sor Systems — Design and Integration. World Scientific, 1995. To appear.

[9] Craig S. Freedman, Josef Burger, and David J. Dewitt. SPIFFI — a
scalable parallel file system for the Intel Paragon. Submitted to IEEE
TPDS, 1994.

[10] IBM. AIX Version 3.2 General Programming Concepts, twelfth edition,
October 1994.

[11] David Kotz. Disk-directed I/O for MIMD multiprocessors. In Proceedings
of the 1994 Symposium on Operating Systems Design and Implementation,
pages 61-74, November 1994. Updated as Dartmouth TR PCS-TR94-226
on November 8, 1994.



20 CHAPTER 1

[12] David Kotz and Nils Nieuwejaar. Dynamic file-access characteristics of a
production parallel scientific workload. In Proceedings of Supercomputing
'94, pages 640-649, November 1994.

[13] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S.
Quarterman. The Design and Implementation of the 4-3BSD UNIX Op-
erating System. Addison-Wesley, 1989.

[14] Susan J. LoVerso, Marshall Isman, Andy Nanopoulos, William Nesheim,
Ewan D. Milne, and Richard Wheeler, sfs: A parallel file system for the
CM-5. In Proceedings of the 1998 Summer USENIX Conference, pages
291-305, 1993.

[15] Ethan L. Miller and Randy H. Katz. Input/output behavior of supercom-
puter applications. In Proceedings of Supercomputing '91, pages 567-576,
November 1991.

[16] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter El-
lis, and Michael Best. File-access characteristics of parallel scientific work-
loads. Technical Report PCS-TR95-263, Dept. of Computer Science, Dart-
mouth College, August 1995. Submitted to IEEE TPDS.

[17] John Ousterhout, Herve Da Costa, David Harrison, John Kunze, Mike
Kupfer, and James Thompson. A trace driven analysis of the UNIX 4.2
BSD file system. In Proceedings of the Tenth ACM Symposium on Oper-
ating Systems Principles, pages 15-24, December 1985.

[18] Paul Pierce. A concurrent file system for a highly parallel mass storage
system. In Fourth Conference on Hypercube Concurrent Computers and
Applications, pages 155-160, 1989.

[19] Apratim Purakayastha, Carla Schlatter Ellis, David Kotz, Nils Nieuwejaar,
and Michael Best. Characterizing parallel file-access patterns on a large-
scale multiprocessor. In Proceedings of the Ninth International Parallel
Processing Symposium, pages 165-172, April 1995.

[20] Brad Rullman and David Payne. An efficient file I/O interface for par-
allel applications. DRAFT presented at the Workshop on Scalable I/O,
Frontiers '95, February 1995.




