Skip to main content

Spatial Planning: A Configuration Space Approach

  • Chapter
Book cover Autonomous Robot Vehicles

Abstract

This paper presents algorithms for computing constraints on the position of an object due to the presence of other objects. This problem arises in applications that require choosing how to arrange or how to move objects without collisions. The approach presented here is based on characterizing the position and orientation of an object as a single point in a configuration space, in which each coordinate represents a degree of freedom in the position or orientation of the object. The configurations forbidden to this object, due to the presence of other objects, can then be characterized as regions in the configuration space, called configuration space obstacles. The paper presents algorithms for computing these configuration space obstacles when the objects are polygons or polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Adamowicz, “The optimum two-dimensional allocation of irregular, multiply-connected shapes with linear, logical and geometric constraints,” Ph.D. dissertation, Dep. Elec. Eng., New York Univ., 1970.

    Google Scholar 

  2. M. Adamowicz and A. Albano, “Nesting two-dimensional shapes in rectangular modules,” Computer Aided Design, vol. 8, pp. 27–32, Jan. 1976.

    Article  Google Scholar 

  3. A. Albano and G. Sapuppo, “Optimal allocation of two-dimensional irregular shapes using heuristic search methods,” IEEE Trans. Syst., Man., Cybern., vol. SMC-10, pp. 242–248, May 1980.

    Google Scholar 

  4. D. Avis and G. T. Toussaint, “An optimal algorithm for determining the visibility of a polygon from an edge,” Sch. Comput. Sci., McGill Univ., Rep. SOCS–80. 2, Feb. 1980.

    Google Scholar 

  5. R. V. Benson, Euclidean Geometry and Convexity. New York: McGraw-Hill, 1966.

    MATH  Google Scholar 

  6. J. I. Bentley and T. Ottman, “Algorithms for reporting and counting geometric intersections,” IEEE Trans. Comput., vol. C-28, Sept. 1979.

    Google Scholar 

  7. O. Bottema and B. Roth, Theoretical Kinematics. Amsterdam: North-Holland, 1979.

    MATH  Google Scholar 

  8. J. W. Boyse, “Interference detection among solids and surfaces,” Commun. Ass. Comput. Mach., vol. ACM 22, pp. 3–9, Jan. 1979.

    Google Scholar 

  9. R. A. Brooks, “Solving the Find-Path problem by representing free space as generalized cones,” M.I.T. Artificial Intell. Lab., Rep. AIM-674, May 1982.

    Google Scholar 

  10. R. A. Brooks and T. Lozano-Pérez, “A subdivision algorithm in configuration space for Findpath with rotation,” M.I.T. Artificial Intell. Lab., Rep. AIM-684, Dec. 1982.

    Google Scholar 

  11. K. Q. Brown, “Fast intersection of half spaces,” Dep. Comput. Sci., Carnegie-Mellon Univ., Rep. CS-78-129, June 1978.

    Google Scholar 

  12. C. E. Campbell and J. Y. S. Luh, “A preliminary study on path planning of collision avoidance for mechanical manipulators,” Sch. Elec. Eng., Purdue Univ., Rep. TR-EE 80 - 48, Dec. 1980.

    Google Scholar 

  13. H. Freeman, “On the packing of arbitrary-shaped templates,” in Proc. 2nd USA-Japan Comput. Conf., 1975, pp. 102–107.

    Google Scholar 

  14. G. Giralt, R. Sobek, and R. Chatila, “A multilevel planning and navigation system for a mobile robot,” in Proc. 6th Int. Joint Conf. Artificial Intell., Tokyo, Japan, Aug. 1979, pp. 335–338.

    Google Scholar 

  15. R. L. Graham, “An efficent algorithm for determining the convex hull of a finite planar set,” Inform. Processing Lett., vol. 1, pp. 132–133, 1972.

    Article  MATH  Google Scholar 

  16. B. Grunbaum, Convex Polytopes. New York: Wiley-Interscience, 1967.

    Google Scholar 

  17. L. J. Guibas and F. F. Yao, “On translating a set of rectangles,” in Proc. 12th Annu. ACM Symp. Theory of Computing, Los Angeles, CA, Apr. 1980, pp. 154–160.

    Google Scholar 

  18. W. E. Howden, “The sofa problem,” Comput. J., vol. 11, pp. 299–301, Nov. 1968.

    Article  MATH  Google Scholar 

  19. R. C. Larson and V. O. K. Li, “Finding minimum rectilinear distance paths in the presence of obstacles,” Networks, vol. 11, pp. 285–304, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. A. Lewis, “Autonomous manipulation on a robot: Summary of manipulator software functions,” Jet Propulsion Lab., California Inst. Technol., TM 33 - 679, Mar. 1974.

    Google Scholar 

  21. L. Lieberman and M. A. Wesley, “AUTOPASS: An automatic programming system for computer controlled assembly,” IBM J. Res. Develop., vol. 21, July 1977.

    Google Scholar 

  22. T. Lozano-Pérez, “The design of a mechanical assembly system,” M.I.T. Artificial Intell. Lab., Rep. TR-397, Dec. 1976.

    Google Scholar 

  23. T. Lozano-Pérez, “Automatic planning of manipulator transfer movements,” IEEE Trans. Syst., Man., Cybern., vol. SMC-11, pp. 681–698, Oct. 1981.

    Google Scholar 

  24. T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-free paths among polyhedral obstacles,” Commun. Ass. Comput. Mach., vol. ACM 22, pp. 560–570, Oct. 1979.

    Google Scholar 

  25. L. Lyusternik, Convex Figures and Polyhedra. Dover, 1963, original copyright, Moscow, 1956.

    MATH  Google Scholar 

  26. H. P. Moravec, “Visual mapping by a robot rover,” in Proc. 6th Int. Joint Conf. Artificial Intell., Tokyo, Japan, Aug. 1979.

    Google Scholar 

  27. D. Mueller and F. Preparata, “Finding the intersection of two convex polyhedra,” Coordinated Sci. Lab., Univ. Illinois, Urbana, Rep. R-793. Oct. 1977.

    Google Scholar 

  28. N. Nilsson, “A mobile automaton: An application of artificial intelligence techniques,” in Proc. 2nd Int. Joint Conf. Artificial Intell., 1969, pp. 509–520.

    Google Scholar 

  29. R. P. Paul, “Manipulator Cartesian path control,” IEEE Trans. Syst., Man., Cybern., vol. SMC-9, pp. 702–711, Nov. 1979.

    Google Scholar 

  30. G. Pfister, “On solving the FINDSPACE problem, or how to find where things aren’t,” M.I.T. Artificial Intell. Lab., Working Paper 113, Mar. 1973.

    Google Scholar 

  31. D. L. Pieper, “The kinematics of manipulators under computer control,” Stanford Artificial Intell. Lab., AIM-72, Oct. 1968.

    Google Scholar 

  32. F. Preparata and S. Hong, “Convex hulls of finite sets of point in two and three dimensions,” Commun. Ass. Comput. Mach., vol. 20, pp. 87–93, Feb. 1977.

    MATH  MathSciNet  Google Scholar 

  33. F. Preparata and D. Mueller, “Finding the intersection of a set of half spaces in time 0(n log n),” Coordinated Sci. Lab., Univ. Illinois, Urbana, Rep. R-803, Dec. 1977.

    Google Scholar 

  34. J. Reif, “On the movers problem,” in Proc. 20th Annu. IEEE Symp. Foundation of Comput. Sci., 1979, pp. 421–427.

    Google Scholar 

  35. B. Schachter, “Decomposition of polygons into convex sets,” IEEE Trans. Comput.,vol. C-27, pp. 1078–1082, Nov. 1978.

    Google Scholar 

  36. M. I. Shamos, “Geometric complexity,” in Proc. 7th Annu. ACM Symp. Theory of Computing, 1975, pp. 224–233.

    Google Scholar 

  37. M. I. Shamos and D. Hoey, “Closest-point problems,” in Proc. 16th Annu. IEEE Symp. Foundation of Comput. Sci., 1975, pp. 151–161.

    Google Scholar 

  38. M. I. Shamos, “Geometric intersection problems,” in Proc. 17th Annu. IEEE Symp. Foundation of Comput. Sci., 1976, pp. 208–215.

    Google Scholar 

  39. J. T. Schwartz, “Finding the minimum distance between two convex polygons,” Inform. Processing Lett., vol. 13, pp. 168 - 170, 1981.

    Article  Google Scholar 

  40. J. T. Schwartz and M. Sharir, “On the piano movers’ problem I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers,” Dep. Comput. Sci., Courant Inst. Math. Sci., New York Univ., Rep. 39, 1981.

    Google Scholar 

  41. J. T. Schwartz and M. Sharir, “On the piano movers’ problem II. General techniques for computing topological properties of real manifolds,” Dep. Comput. Sci., Courant Inst. Math. Sci., New York Univ., Rep. 41, 1982.

    Google Scholar 

  42. Y. G. Stoyan and L. D. Ponomarenko, “A rational arrangement of geometric bodies in automated design problems,” Eng. Cybern., vol. 16, Jan. 1978.

    Google Scholar 

  43. R. Taylor, “A synthesis of manipulator control programs from task-level specifications,” Stanford Artificial Intell. Lab., Rep. AIM-282, July 1976.

    Google Scholar 

  44. A. M. Thompson, “The navigation system of the JPL robot,” in Proc. 5th Int. Joint Conf. Artificial Intell., Massachusetts Inst. Technol., 1977.

    Google Scholar 

  45. S. Udupa, “Collision detection and avoidance in computer controlled manipulators,” in Proc. 5th Int. Joint Conf. Artificial Intell., Massachusetts Inst. Technol., 1977.

    Google Scholar 

  46. S. Udupa, “Collision detection and avoidance in computer controlled manipulators,” Ph.D. dissertation, Dep. Elec. Eng., California Inst. Technol., 1977.

    Google Scholar 

  47. J. E. Warnock, “A hidden line algorithm for halftone picture representation,” Dep. Comput. Sci., Univ. Utah, Rep. TR4-5, May 1968.

    Google Scholar 

  48. J. Williams, “STICKS—A new approach to LSI design,” S.M. thesis, Dep. Elec. Eng., Massachusetts Inst. Technol., 1977.

    Google Scholar 

  49. T. Winograd, Understanding Natural Language. New York: Aademic, 1972.

    Google Scholar 

  50. T. C. Woo, “Progress in shape modelling,” IEEE Computer, vol. 10, Dec. 1977.

    Google Scholar 

  51. F. F. Yao, “On the priority approach to hidden-surface algorithms,” in Proc. 21st Symp. Foundation of Comput. Sci., 1980, pp. 301–307.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 AT&T

About this chapter

Cite this chapter

Lozano-Pérez, T. (1990). Spatial Planning: A Configuration Space Approach. In: Cox, I.J., Wilfong, G.T. (eds) Autonomous Robot Vehicles. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8997-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8997-2_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8999-6

  • Online ISBN: 978-1-4613-8997-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics