Skip to main content

An Automatic Motion Planning System for a Convex Polygonal Mobile Robot in 2-Dimensional Polygonal Space

  • Chapter
Autonomous Robot Vehicles

Abstract

We present an automatic system for planning the (translational and rotational) collision-free motion of a convex polygonal body B in two-dimensional space bounded by a collection of polygonal obstacles. The system consists of a (combinatorial, non-heuristic) motion planning algorithm, based on sophisticated algorithmic and combinatorial techniques in computational geometry, and is implemented on a Cartesian robot system equipped with a 2-D vision system. Our algorithm runs in the worst-case in time O(kn λ6(kn) log kn), where k is the number of sides of B, n is the total number of obstacle edges, and λ6(r) is the (nearly-linear) maximum length of an (r,6) Davenport Schinzel sequence. Our implemented system provides an “intelligent” robot that, using its attached vision system, can acquire a geometric description of the robot and its polygonal environment, and then, given a high-level motion command from the user, can plan a collision-free path (if one exists), and then go ahead and execute that motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Agarwal, M. Sharir and P. Shor, Sharp upper and lower bounds for the length of general Davenport Schinzel sequences, to appear in J. Combin. Theory, Ser. A.

    Google Scholar 

  2. M. Atallah, Some dynamic computational geometry problems, Comp. Math. Appl. 11 (1975), pp. 1171–1181.

    Article  MathSciNet  Google Scholar 

  3. B.K. Bhattacharya and J. Zorbas, Solving the two-dimensional findpath problem using a line-triangle representation of the robot, J. Algorithms, 9 (1988), pp. 449–469.

    Article  MATH  MathSciNet  Google Scholar 

  4. R.A. Brooks and T. Lozano-Perez, A subdivision algorithm in configuration space for findpath with rotation, Proc. IJCAI-83, Karlsruhe, 1983.

    Google Scholar 

  5. S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, Combinatorica 6 (1986), pp. 151–177.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Hopcroft, J. Schwartz and M. Sharir (Eds.), Planning, Geometry, and Complexity of Robot Motion, Ablex Pub. Co., Norwood, NJ 1987.

    Google Scholar 

  7. K. Kedem, Problems in planning collision-free motion for a rigid robot system in the plane: theory and application, Ph.D. thesis, Comp. Sci. Dept, Tel-Aviv University, July 1988.

    Google Scholar 

  8. K. Kedem, R. Livne, J. Pach and M. Sharix, On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1 (1986), pp. 59–71.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Kedem and M. Sharir, An efficient algorithm for planning collision-free translational motion of a convex polygonal object in 2-dimensional space amidst polygonal obstacles, Proc. ACM Symp. on Computational Geometry 1985, pp. 75–80.

    Google Scholar 

  10. A. Kalvin, E. Schonberg, J.T. Schwartz and M. Sharir, Two dimensional model based boundary matching using footprints, Int. J. Robotics Research 5 (4) (1986), pp. 38–55.

    Article  Google Scholar 

  11. D. Leven and M. Sharir, An efficient and simple motion planning algorithm for a ladder moving in two-dimensional space amidst polygonal barriers, Algorithms 8 (1987), pp. 192–215.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Leven and M. Sharir, Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams, Discrete Comput. Geom. 2 (1987), pp. 9–31.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Leven and M. Sharir, On the number of criti-cal free contacts of a convex polygonal object moving in 2-D polygonal space, Discrete Comput. Geom. 2 (1987), pp. 255–270.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Lozano-Perez, A simple motion planning algorithm for general robot manipulators, IEEE J. Robotics and Automation, 3 (3) (1987), pp. 224–238.

    Article  Google Scholar 

  15. V. J. Lumelsky, Dynamic path planning for planar articulated robot arm moving amidst moving obstacles, Automatica, 23 (5) (1987), pp. 551–570.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. J. Lumelsky and A. A. Stepanov, Path planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape, Algorithmic, 2 (4) (1987), pp. 403–430.

    Article  MATH  MathSciNet  Google Scholar 

  17. O’Dunlaing, C. and Yap, C., A ‘retraction’ method for planning the motion of a disc, J. Algorithms 6 (1985), pp. 104 - 111.

    Article  MATH  MathSciNet  Google Scholar 

  18. O’Dunlaing, C., Sharir, M. and Yap, C., Generalized Voronoi diagrams for a ladder: I. Topological analysis, Comm. Pure Appl. Math. 39 (1986), pp. 423–483.

    Article  MATH  MathSciNet  Google Scholar 

  19. O’Dunlaing, C., Sharir, M. and Yap, C., Generalized Voronoi diagrams for a ladder. II. Efficient construction of the diagram, Algorithmica 2 (1987), pp. 27–59.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. O’Rourke, A lower bound for moving a ladder, Tech. Rept JHU/EECS-85/20, The Johns Hopkins University, 1985.

    Google Scholar 

  21. J.T. Schwartz and M. Sharir, On the Piano Movers’ problem: I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers, Comm. Pure Appl. Math. 36 (1983), pp. 345–398.

    Article  MATH  MathSciNet  Google Scholar 

  22. J.T. Schwartz and M. Sharir, Motion planning and related geometric algorithms in robotics, Proc. International Congress of Mathematicians, Berkeley, August 1986, Vol. 2, pp. 1594–1611.

    Google Scholar 

  23. S. Sifrony and M. Sharir, An efficient motion planning algorithm for a rod moving in two- dimensional polygonal space, Algorithmica 2 (1987), pp. 367–402.

    Article  MATH  MathSciNet  Google Scholar 

  24. C.K. Yap, Algorithmic motion planning, in Advances in Robotics, Vol. 1 ( J.T. Schwartz and C.K. Yap, Eds.), Lawrence Erlbaum, Hillsdale, NJ 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 AT&T

About this chapter

Cite this chapter

Kedem, K., Sharir, M. (1990). An Automatic Motion Planning System for a Convex Polygonal Mobile Robot in 2-Dimensional Polygonal Space. In: Cox, I.J., Wilfong, G.T. (eds) Autonomous Robot Vehicles. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8997-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8997-2_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8999-6

  • Online ISBN: 978-1-4613-8997-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics