
Texts and Monographs in Computer Science

Editor

David Gries

Advisory Board
F.L. Bauer

S.D. Brookes
C.E. Leiserson
F. B. Schneider

M. Sipser

Texts and Monographs in Computer Science

SuadAlagie
Object-Oriented Database Programming
1989. XV, 320 pages, 84 illus.

SuadAlagie
Relational Database Technology
1986. XI, 259 pages, 114 iIIus.

Suad Alagie and Michael A. Arbib
The Design of Well-Structured and Correct Programs
1978. X, 292 pages, 68 iIIus.

S. Thomas Alexander
Adaptive Signal Processing: Theory and Applications
1986. IX, 179 pages, 42 iIIus.

Michael A. Arbib, A.J. Kfoury, and Robert N. Moll
A Basis for Theoretical Computer Science
1981. VIII, 220 pages, 49 iIIus.

Friedrich L. Bauer and Hans Wossner
Algorithmic Language and Program Development
1982. XVI, 497 pages, 109 iIIus.

Kaare Christian
A Guide to Modula-2
1986. XIX, 436 pages, 46 iIIus.

Edsger W. Dijkstra
Selected Writings on Computing: A Personal Perspective
1982. XVII, 362 pages, 13 iIIus.

Edsger W. Dijkstra and Carel S. Scholten
Predicate Calculus and Program Semantics
1990. XII, 220 pages

W.H.J. Feijen, A.J.M. van Gasteren, D. Gries, and J. Misra, Eds.
Beauty Is Our Business: A Birthday Salute to Edsger W. Dijkstra
1990. XX, 453 pages, 21 iIIus.

Melvin Fitting
First-Order Logic and Automated Theorem Proving
1990. XIV, 242 pages, 26 illus.

Nissim Francez
Fairness
1986. XIII, 295 pages, 147 iIIus.

continued after index

Programming with
Specifications

An Introduction to ANNA, A Language
for Specifying Ada Programs

David Luckham

Springer-Verlag
New York Berlin Heidelberg London

Paris Tokyo Hong Kong Barcelona

David Luckham
Computer Science Laboartory
Stanford University
Stanford, CA 94305-4055
USA

Series Editor

David Gries
Department of Computer Science
Cornell University
Ithaca, NY 14853
USA

Printed on acid-free paper.

© 1990 Springer-Verlag New York, Inc.
Softcover reprint of the hardcover 1 st edition 1990

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New
York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even
if the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely
by anyone.

Photocomposed copy prepared by the author using the author's LATEX file.

987654321

ISBN-13:978-1-4613-9687-1 e-ISBN-13:978-1-4613-9685-7
001: 10.1007/978-1-4613-9685-7

These pages are dedicated
to those who sat by

and watched them grow:
Susannah and Brian

Preface

Topics

• what this book is about,
• its intended audience,
• what the reader ought to know,
• how the book is organized,
• acknowledgements.

Specifications express information about a program that is not normally
part of the program, and often cannot be expressed in a programming lan
guage. In the past, the word "specification" has sometimes been used to
refer to somewhat vague documentation written in English. But today it
indicates a precise statement, written in a machine processable language,
about the purpose and behavior of a program. Specifications are written
in languages that are just as precise as programming languages, but have
additional capabilities that increase their power of expression. The termi
nology formal specification is sometimes used to emphasize the modern
meaning. For us, all specifications are formal.

The use of specifications as an integral part of a program opens up a
whole new area of programming - progmmming with specifications. This
book describes how to use specifications in the process of building programs,
debugging them, and interfacing them with other programs. It deals with
a new trend in programming - the evolution of specification languages
from the current generation of programming languages. And it describes
new strategies and styles of programming that utilize specifications. The
trend is just beginning, and the reader, having finished this book, will

viii Preface

certainly see that there is much yet to be done and to be discovered about
programming with specifications.

This is a book for people who have attained some experience with pro
gramming languages and have already written some significant programs.
Better yet, the reader should have tried to understand or modify someone
else's programs. Such readers will have concluded from their own experience
that the current methods of programming have to become more disciplined.
Now they are ready to explore programming with specifications.

In writing the book, I have had in mind primarily two groups of people:
professional software engineers and college undergraduates and graduates
taking courses in computer science or software engineering. But in this
age of the home computer, people who have the sort of experience I have
just alluded to can come from almost any age group and many different
backgrounds.

What precisely should the reader know already? There are two prereq
uisites, which I will describe by telling you just a little about the book.

The book deals with the use of specifications to develop Ada programs.
Specifications are written in a formal language called Anna. Anna is a
specification language. It is no harder to learn than programming languages
such as Pascal or Modula2 or Ada. In fact, Anna is an extension of the
Ada language. It allows annotations to be included as part of an Ada
program. Annotations can be processed by tools "like" compilers, and by
very different kinds of tools as well. Anna stands for "ANNotated Ada."

Ideally, the reader should already know Ada. This is the first prerequi
site, but it is not absolutely necessary. A reader who knows Modula2 or
more advanced dialects of Pascal, or C++, can use this book as a way of
simultaneously learning Ada as well as Anna. This is possible because the
concepts and methods of programming with specifications are independent
of any particular programming language. They apply equally well to any
language containing constructs similar to Ada. Anna could just as easily
have been based on Modula2, for example.

Why choose to study programming with specifications in the context of
Ada - or any particular programming language? My answer is this. In
order to develop new ways of programming that are really practical, it is
absolutely essential to deal with the real problems that are faced by the
real programmer in the use of a real programming language. And since
Ada is certainly the most ambitious Algol-like language of the time, it is
a logical choice upon which to base the development of new programming
methods. Of course, some of the details involved in specifying programs
written in any of today's programming languages are quite messy. Indeed,
these messy details have an annoying way of complicating methods that
are really very simple. But, if we are successful in developing new methods
of programming, the ultimate consequence will be the evolution of more
advanced languages that make those methods easy to apply. By exposing
the messy details, they will eventually disappear!

Preface ix

The second prerequisite is a little background in the theory of computer
science - not a lot, just a little. This involves three things that are normally
part of an undergraduate curriculum: (1) basic data structures (lists, trees,
sets, stacks, and queues); (2) formal logic, usually called Propositional and
Predicate Logic (you should know about Boolean operators, what a quanti
fier is, and what a formal prooflooks like); and (3) an undergraduate course
in abstract algebra (a knowledge of axioms for linear ordering, groups, a
little of that sort of thing).

Anna and methods of programming with specifications are presented
informally. They are described in much the same way as most books de
scribe programming languages or algorithms and data structures. The idea
is not to demand a lot of background from the reader. So the book is really
an experiment to see if the use of specifications in programming can be
taught just like the use of advanced programming constructs and struc
tures are taught now. As readers progress in the methods of writing and
using specifications, they may become interested in exploring the founda
tional theories. These can be found in other books on the mathematical
semantics of specifications and programs, and on axiomatic proof systems.

This book does two things: it explains Anna and it describes possible
ways of using it. The book alternates between explaining Anna constructs
and giving examples describing methods of programming with specifica
tions. I have used four devices to help this alternation: (1) commentaries
on examples, (2) guidelines on constructing specifications, (3) recipes for
describing methods of applying specifications, and (4) the star (*).

Examples nearly always include a commentary that encapsulates var
ious details of methodology. Our examples aren't perfect either; their im
perfections are used to illustrate the compromises and choices one may
face in the practical world of imperfect languages and too little time. Com
mentaries also include a lot of the details that are specific to Ada. Those
interested in a general overview of Anna can skip commentaries, but I don't
advise it.

Guidelines are common-sense rules of thumb about how to construct
specifications, and what kinds of information to express in them. They are
prominently displayed at various points in the discussion of applications of
specifications.

Recipes really are cookery. Sometimes I want to describe an algorithm
for applying specifications that really is too complicated for humans to do
in general. I give a rather vague outline called a recipe. Recipes give the
reader a taste of the method as it applies to simple examples. Good cooks
should be able to reconstruct a complete algorithm, with variations to taste.
Future environments will contain tools that automate such algorithms. So
eventually, users will need to know only what a recipe produces, and not
how to cook it.

Some parts of the book are hard to read. They contain complicated
formulas, or go into messy details. These sections and chapters are starred

x Preface

(*). Starred sections can be passed over on a first reading.
It is important to read this book in conjunction with other books and

research papers as well. I have included reading lists at the end of some
chapters. The lists are short - to encourage the reader. They provide an
overview of some of the prior work upon which programming with specifica
tions is based, and also how it fits in with other current work and perceived
problems in the software area.

The structure of the book is as follows.
Chapter 0 describes how modern programming languages are gradually

evolving into specification languages and why this is happening. It gives
a short general description of applications of formal specifications to the
programming process.

Chapters 1, 2, and 7 deal with annotations of the Pascal-like subset of
Ada - called simple annotations. A description of simple annotations is
in Chapter 1. The basic concepts needed to define the meaning of formal
annotations and the correctness of programs are introduced and discussed
as the need for them becomes obvious. This way, a lengthy preliminary
chapter on formal semantics and correctness is avoided. Applications of
simple annotations are described in Chapter 2. More advanced annotations
for composite data structures, together with examples of applications are
in Chapter 7.

Chapter 3 describes annotations for programs with exceptions and a
method of specifying exceptional behavior in Ada programs.

Chapters 4 and 5 deal with specification of packages. These chapters are
the heart of programming with specifications. Chapter 4 explains the anno
tation constructs for package specifications. Chapter 5 describes methods
of specifying packages and analyzing the consequences of package specifica
tions. The methods and examples given here are only a small introduction
to the science of building formal specifications for software packages. This is
an area where more powerful methods and languages need to be developed.
Many topics, such as incompleteness of specifications, are only mentioned
in passing. These two chapters could easily have taken the entire book.

Chapter 6 describes annotation of Ada generic units and how such an
notations are relevant to building reusable software.

Chapters 8, 9, and 10 are devoted to annotation and construction of
package bodies. The crucial problem is construction of a package body
that is consistent with a given package specification. There are three parts
to this problem, each part being assigned a separate chapter. Chapter 8
explains package body annotations. Chapter 9 illustrates ways to analyze
whether the body, as it is being implemented, is (or will be) consistent
with the original specification. This chapter is starred since it involves
rather lengthy annotations. Chapter 10 describes new methods of utilizing
a package specification as a guide in implementing a body. These methods
are examples of rigorous software development methods. They integrate
techniques such as runtime checking of specifications into the process of

Preface xi

building packages so that implementation errors are caught as early as
possible and certain kinds of errors never happen.

As mentioned earlier, this book is an introduction to programming with
specifications. This area is just emerging. The use of specifications is a
logical development from recent trends in programming languages, and it
is being explored as an approach to dealing with increasing problems in
software production. There is much still to be done. I hope the reader will
be encouraged to improve upon what is in these pages, and if so, I shall
consider the book a success.

Acknowledgements

The research leading to the development of Anna and its support tools
has been sponsored by the Defense Advanced Research Projects Agency.
I am indebted to DARPA for the opportunity to do this work in the first
place.

Many patient people have read various versions of this book during its
evolution, and their comments have been helpful and influential. Some of
them were good enough to review more than one version! Particularly, I am
indebted to past and present members of the Program Analysis and Veri
fication Group at Stanford who have reviewed the book and developed the
Anna toolset: Doug Bryan, John Kenny, Neel Madhav, Walter Mann, Ge
off Mendal, Randy Neff, Wolfgang Polak, David Rosenblum, Sriram Sankar,
Will Tracz, and Friedrich von Henke. In addition, it gives me great plea
sure to thank David Gries for a detailed review beyond the duty of any
editor, and Jennifer Anderson, David Guaspari, and Norman Ramsey for
detailed comments. And there are many others to whom my thanks are also
due, especially the students in my "Topics in Ada Progmmming" courses
at Stanford. The book is much better as a result of everyone's efforts to
help me, but of course I'm responsible for whatever is wrong with it.

Certainly, the book would not exist without Rosemary Brock, who of
all patient people has been the most patient, dealing with many versions
in Scribe and 'lEX and u\TEX over several years. So, Rosemary, thank you
too.

D. C.L.
Palo Alto
1989

Contents

o What Anna Is
0.1 From Informal Comments to Formal Annotations .
0.2 Adding Annotations to Ada
0.3 Applying Anna .
0.4 Environments for Programming with Specifications
0.5 Future Developments
0.6 Terminology and Notation

1 Simple Annotations
1.1 Annotations
1.2 The Meaning of Simple Annotations
1.3 Anna Expressions. . . .
1.4 Quantified Expressions .
1.5 Modifiers
1.6 Assertions
1. 7 Compound Statement Annotations
1.8 Object Annotations
1.9 Subprogram Annotations

1.9.1 Out values of procedure parameters *
1.9.2 Conformance of subprogram annotations *

1.10 Type Annotations
1.10.1 Anna membership test.

1.11 Elaboration of Annotations *
1.12 Proper Annotations ...

2 Using Simple Annotations
2.1 Three General Activities .
2.2 Virtual Text.

2.2.1 Formalizing concepts.
2.2.2 Rules for virtual text * .

2.3 Assertions as Tests and Documentation
2.3.1 Choosing assertions
2.3.2 When to use assertions to express tests

1
2
8

10
13
15
17

19
19
21
25
26
33
34
37
39
42
47
49
49
54
54
56

59
59
62
64
66
68
69
72

xiv Contents

2.4 Assertions and Timing . . .
2.5 Assertions in Loops

2.5.1 Successor functions .
2.5.2 Related assertions
2.5.3 Structuring testing and proof
2.5.4 Loop induction *

2.6 Invariants: Compound Statement Annotations.
2.7 Increasing the Scope of Annotations
2.8 Specification Using Subprogram Annotations

2.8.1 Specifying subprograms
2.8.2 Formalizing and organizing concepts

2.9 Runtime Checking of Simple Annotations

73
76
79
80
83
85
90
91
97
98

101
106

3 Exceptions 111
3.1 Annotating Raising and Handling of Exceptions. 111

3.1.1 Consistency of raising and handling exceptions 114
3.2 Propagation Annotations 118
3.3 Annotating Exception Propagation 123

4 Package Specifications 128
4.1 Annotations and Package Structure. 129
4.2 Simple Annotations in Package Declarations . 133
4.3 Package States 141
4.4 Using Package States. 145

4.4.1 Evaluating package functions in a state 146
4.4.2 Successor states. 149
4.4.3 Equality on state types 154

4.5 Package Axioms 155
4.5.1 Axioms for equality .. 163

4.6 Restrictions on Package States * 165
4.6.1 Restrictions on use of state attributes * 165
4.6.2 State attributes of generic packages. 167

5 The Process of Specifying Packages 169
5.1 Getting Started. 170
5.2 Theory Packages 178
5.3 A PL/l String Manipulation Package. 182
5.4 A Simple Sets Package . 187
5.5 Dependent Specification 191
5.6 Relative Specification 193

5.6.1 Extension.... 194
5.6.2 Association-Modeling types with other types 195
5.6.3 An example of relative specification by association

- Small Library 199
5.7 The DIRECT _ 10 Package 207

5.8 Symbolic Execution of Specifications * . . .
5.8.1 A recipe for symbolic execution * ..
5.8.2 An example of symbolic execution *

5.9 Iterators and Generators

6 Annotation of Generic Units
6.1 Generic Annotations

Contents xv

217
220
224
228

233
233

6.2 Generic Parameter Constraints 238
6.2.1 Rationale for restricting generic parameter annota-

tions * 242
6.3 Annotated Generic Units as Reusable Software 244

6.3.1 Generalization 244
6.3.2
6.3.3

Specifying generic contexts
Generic theories

7 Annotation of Operations on Composite Types
7.1 Array States
7.2 Using Array States: QuickSort
7.3 Record States

7.3.1 Variant record states * .
7.4 Access Types and Collections .

7.4.1 Collections
7.4.2 Collection states and operations

7.5 Using Collections

8 Annotation of the Hidden Parts of Packages
8.1 Modified Type Annotations

8.1.1 Stability constraints
8.1.2 Changing values of composite types .
8.1.3 Semantics of modified type annotations *

8.2 Representation of Package States
8.2.1 Restrictions on using package states *
8.2.2 Hidden state property

8.3 Annotation of Hidden Package States. . . .
8.4 Annotation of Package Subprogram Bodies
8.5 Establishing Consistency.
8.6 Redefinition of Equality
8.7 Packages as Types

9 Interpretation of Package Specifications *
9.1 Why Interpretations Are Useful
9.2 Constructing Interpretations *
9.3 Interpreting Subprogram Annotations *
9.4 Full Specifications of Subprogram Bodies *
9.5 Interpreting Package Axioms *

245
248

252
252
257
262
265
266
267
272
276

283
286
288
292
294
296
298
300
301
304
312
314
316

320
321
323
334
337
340

xvi Contents

9.6 Interpreting Dependent Specifications * 349

10 Processes for Consistent Implementation of Packages 357
10.1 Making the Normal Ada Process More Rigorous 359
10.2 A Process Based on Runtime Checking. 361
10.3 A Rigorous Process Based on Consistency Proof 365
10.4 An Example: Implementing a Package Body * . 370

A Syntax 386

B Tools 393
B.1 The Anna Runtime Checking System. 394
B.2 Package Specification Analyzer 397

C A Short Bibliography 403
C.1 Anna. 403
C.2 Ada 404
C.3 Specification Languages 404
C.4 Formal Methods 406
C.5 Testing 408

