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Preface

As VLSI technology scales into nanometer regime, chip design engineering faces
several challenges. One profound change in the chip design business is that engi-
neers cannot realize the design precisely into the silicon chips. Chip performance,
manufacture yield, and lifetime thereby cannot be determined accurately at the
design stage accordingly. The main culprit here is that many chip parameters—
such as oxide thickness due to chemical and mechanical polish (CMP) and impurity
density from doping fluctuations—cannot be determined or estimated precisely and
thus become unpredictable at device, circuit, and system levels, respectively. The
so-called manufacturing process variations start to play an essential role, and their
influence on the performance, yield, and reliability becomes significant. As a result,
variation-aware design methodologies and computer-aided design (CAD) tools are
widely believed to be the key to mitigate the unpredictability challenges for 45 nm
technologies and beyond. Variational characterization, modeling, and optimization,
hence, have to be incorporated into each step of the design and verification processes
to ensure reliable chips and profitable manufacture yields.

The book is divided into five parts. Part I introduces basic concepts of many
mathematic notations relevant to statistical analysis. Many established algorithms
and theories such as the Monte Carlo method, the spectral stochastic method, and
the principal factor analysis method and its variants will also be introduced. Part
II focuses on the techniques for statistical full-chip power consumption analy-
sis considering process variations. Chapter 3 reviews existing statistical leakage
analysis methods, as leakage powers are more susceptible to process variations.
Chapter 4 presents a gate-level leakage analysis method considering both inter-
die and inter-die variations with spatial correlations using the spectral stochastic
method. Chapter 5 tries to solve the similar problems in the previous chapter. But a
more efficient, linear-time algorithm is presented based on a virtual grid modeling of
process variations with spatial correlations. In Chap. 6, a statistical dynamic power
analysis technique using the combined virtual grid and the orthogonal polynomial
methods is presented. In Chap. 7, a statistical total chip power estimation method
will be presented. A collocation-based spectral-stochastic-based method is applied
to obtain the variational total chip powers based on accurate SPICE simulation.
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viii Preface

Part III emphasizes on variational analysis of on-chip power grid networks
under process variations. Chapter 8 introduces an efficient stochastic method for
analyzing the voltage drop variations of on-chip power grid networks, considering
log-normal leakage current variations with spatial correlation. Chapter 9 presents
another stochastic method for solving the similar problem in the previous chapter.
But model order reduction has been applied in this method to improve the efficiency
of the simulation. Chapter 10 introduces a new approach to variational power
grid analysis, where model order reduction techniques and variational subspace
modeling are used to obtain the variational voltage drop responses.

Part IV of this book is concerned with statistical interconnect extraction and
modeling under process variations. Chapter 11 presents a statistical capacitance
extraction method using Galerkin-based spectral stochastic method. Chapter 12
discusses a parallel and incremental solver for stochastic capacitance extraction.
Chapter 13 gives a statistical inductance extraction method by collocation-based
spectral stochastic method.

Part V of this book focuses on the performance bound and statistical analysis
of nanometer analog/mixed-signal circuits and the yield analysis and optimization
based on statistical performance analysis and modeling. Chapter 14 presents per-
formance bound analysis technique in s-domain for linearized analog circuits using
symbolic and affine interval methods. Chapter 15 presents an efficient stochastic
mismatch analysis technique for analog circuits using Galerkin-based spectral
stochastic method and nonlinear modeling. Chapter 16 shows a yield analysis and
optimization technique, and Chap. 17 describes a yield optimization algorithm by
an improved voltage binning scheme.

The content of the book comes mainly from the recent publications of authors.
Many of those original publications can be found at http://www.ee.ucr.edu/~stan/
project/sts_ana/main_sts_ana_proj.htm. Future errata and update about this book can
be found at http://www.ee.ucr.edu/~stan/project/books/book11_springer.htm.

Riverside, CA, USA Ruijing Shen
Riverside, CA, USA Sheldon X.-D. Tan
Singapore, Singapore Hao Yu
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