Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs

Ruijing Shen • Sheldon X.-D. Tan • Hao Yu

Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs

Ruijing Shen Department of Electrical Engineering University of California Riverside, USA

Hao Yu Department of Electrical and Electronic Nanyang Technological University Nanyang Avenue 50, Singapore Sheldon X.-D. Tan Department of Electrical Engineering University of California Riverside, USA

ISBN 978-1-4614-0787-4 e-ISBN 978-1-4614-0788-1 DOI 10.1007/978-1-4614-0788-1 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2012931560

© Springer Science+Business Media, LLC 2012

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To our families

Preface

As VLSI technology scales into nanometer regime, chip design engineering faces several challenges. One profound change in the chip design business is that engineers cannot realize the design precisely into the silicon chips. Chip performance, manufacture yield, and lifetime thereby cannot be determined accurately at the design stage accordingly. The main culprit here is that many chip parameters— such as oxide thickness due to chemical and mechanical polish (CMP) and impurity density from doping fluctuations—cannot be determined or estimated precisely and thus become unpredictable at device, circuit, and system levels, respectively. The so-called manufacturing process variations start to play an essential role, and their influence on the performance, yield, and reliability becomes significant. As a result, variation-aware design methodologies and computer-aided design (CAD) tools are widely believed to be the key to mitigate the unpredictability challenges for 45 nm technologies and beyond. Variational characterization, modeling, and optimization, hence, have to be incorporated into each step of the design and verification processes to ensure reliable chips and profitable manufacture yields.

The book is divided into five parts. Part I introduces basic concepts of many mathematic notations relevant to statistical analysis. Many established algorithms and theories such as the Monte Carlo method, the spectral stochastic method, and the principal factor analysis method and its variants will also be introduced. Part II focuses on the techniques for statistical full-chip power consumption analysis considering process variations. Chapter 3 reviews existing statistical leakage analysis methods, as leakage powers are more susceptible to process variations. Chapter 4 presents a gate-level leakage analysis method considering both interdie and inter-die variations with spatial correlations using the spectral stochastic method. Chapter 5 tries to solve the similar problems in the previous chapter. But a more efficient, linear-time algorithm is presented based on a virtual grid modeling of process variations with spatial correlations. In Chap. 6, a statistical dynamic power analysis technique using the combined virtual grid and the orthogonal polynomial methods is presented. In Chap. 7, a statistical total chip power estimation method will be presented. A collocation-based spectral-stochastic-based method is applied to obtain the variational total chip powers based on accurate SPICE simulation.

Part III emphasizes on variational analysis of on-chip power grid networks under process variations. Chapter 8 introduces an efficient stochastic method for analyzing the voltage drop variations of on-chip power grid networks, considering log-normal leakage current variations with spatial correlation. Chapter 9 presents another stochastic method for solving the similar problem in the previous chapter. But model order reduction has been applied in this method to improve the efficiency of the simulation. Chapter 10 introduces a new approach to variational power grid analysis, where model order reduction techniques and variational subspace modeling are used to obtain the variational voltage drop responses.

Part IV of this book is concerned with statistical interconnect extraction and modeling under process variations. Chapter 11 presents a statistical capacitance extraction method using Galerkin-based spectral stochastic method. Chapter 12 discusses a parallel and incremental solver for stochastic capacitance extraction. Chapter 13 gives a statistical inductance extraction method by collocation-based spectral stochastic method.

Part V of this book focuses on the performance bound and statistical analysis of nanometer analog/mixed-signal circuits and the yield analysis and optimization based on statistical performance analysis and modeling. Chapter 14 presents performance bound analysis technique in s-domain for linearized analog circuits using symbolic and affine interval methods. Chapter 15 presents an efficient stochastic mismatch analysis technique for analog circuits using Galerkin-based spectral stochastic method and nonlinear modeling. Chapter 16 shows a yield analysis and optimization technique, and Chap. 17 describes a yield optimization algorithm by an improved voltage binning scheme.

The content of the book comes mainly from the recent publications of authors. Many of those original publications can be found at http://www.ee.ucr.edu/~stan/project/sts_ana/main_sts_ana_proj.htm. Future errata and update about this book can be found at http://www.ee.ucr.edu/~stan/project/books/book11_springer.htm.

Riverside, CA, USA Riverside, CA, USA Singapore, Singapore Ruijing Shen Sheldon X.-D. Tan Hao Yu

Acknowledgment

The contents of the book mainly come from the research works done in the Mixed-Signal Nanometer VLSI Research Lab (MSLAB) at the University of California at Riverside over the past several years. Some of the presented methods also come from the research from Dr. Hao Yu's research group at Nanyang Technological University, Singapore.

It is a pleasure to record our gratitude to many Ph.D. students who have contributed to this book. They include Dr. Duo Li, Dr. Ning Mi, Dr. Zhigang Hao, and Mr. Fang Gong (UCLA) for some of their research works presented in this book. Special thank is also given to Dr. Hai Wang, who helps to revise and proofread the final draft of this book.

Sheldon X.-D. Tan is grateful to his collaborator Prof. Yici Cai of Tsinghua University for the collaborative research works, which lead to some of the presented works in this book. Sheldon X.-D. Tan is also obligated to Dr. Jinjun Xiong and Dr. Chandu Visweswariah of IBM for their insights into many important problems in industry, which inspired some of the works in this book.

The authors would like to thank both the National Science Foundation and National Nature Science Foundation of China for their financial support for this book. Sheldon X.-D. Tan highly appreciates the consistent support of Dr. Sankar Basu of the National Science Foundation over the past 7 years. This book project is funded in part by NSF grant under No. CCF-0448534; in part by NSF grants under No. OISE-0623038, OISE-0929699, OISE-1051787, CCF-1116882; and OISE-1130402; and in part by the National Natural Science Foundation of China (NSFC) grant under No. 60828008. We would also would like to thank for the support of UC Regent's Committee on Research Fellowship and Faculty Fellowships from the University of California at Riverside. Dr. Hao Yu would like also to acknowledge the funding support from NRF2010NRF-POC001-001, Tier-1-RG 26/10, and Tier-2-ARC 5/11 at Singapore.

Last not least, Sheldon X.-D. Tan would like to thank his wife, Yan, and his daughters, Felicia and Leslay, for understanding and support during the many hours it took to write this book. Ruijing Shen would like to express her deepest gratitude to her adviser, Prof. Sheldon X.-D. Tan, for his help, trust, and guidance. There exist

wonders as well as frustrations in academic research. His kindness, insight, and suggestions always let her go the right way. A special word of thanks for all of Ruijing's mentors in Tsinghua University (Prof. Xiangqing He, Prof. Xianlong Hong, Prof. Changzheng Sun, et al.). They taught her about the world of electronics (and much beyond). Finally, Ruijing Shen is extremely grateful to her husband, Boyuan Yan, the whole family, and all her friends. She would like to thank them for their constant support and encouragement during the writing of this manuscript.

Contents

Part I Fundamentals

1	In	trodu	iction	3
	1	Nan	ometer Chip Design in Uncertain World	3
		1.1	Causes of Variations	4
		1.2	Process Variation Classification and Modeling	6
		1.3	Process Variation Impacts	8
	2	Boo	k Outline	8
		2.1	Statistical Full-Chip Power Analysis	9
		2.2	Variational On-Chip Power Delivery Network Analysis	10
		2.3	Statistical Interconnect Modeling and Extraction	11
		2.4	Statistical Analog and Yield Analysis and Optimization	12
	3	Sum	ımary	13
2	Fı	ındar	nentals of Statistical Analysis	15
	1	Basi	ic Concepts in Probability Theory	15
		1.1	Experiment, Sample Space, and Event	15
		1.2	Random Variable and Expectation	16
		1.3	Variance and Moments of Random Variable	17
		1.4	Distribution Functions	18
		1.5	Gaussian and Log-Normal Distributions	19
		1.6	Basic Concepts for Multiple Random Variables	20
	2	Mul	tiple Random Variables and Variable Reduction	23
		2.1	Components of Covariance in Process Variation	23
		2.2	Random Variable Decoupling and Reduction	25
		2.3	Principle Factor Analysis Technique	26
		2.4	Weighted PFA Technique	26
		2.5	Principal Component Analysis Technique	27
	3	Stat	istical Analysis Approaches	28
		3.1	Monte Carlo Method	28

		3.2 Spectral Stochastic Method Using Stochastic	
		Orthogonal Polynomial Chaos	29
		3.3 Collocation-Based Spectral Stochastic Method	31
		3.4 Galerkin-Based Spectral Stochastic Method	33
	4	Sum of Log-Normal Random Variables	33
		4.1 Hermite PC Representation of Log-Normal Variables	34
		4.2 Hermite PC Representation with One Gaussian Variable	35
		4.3 Hermite PC Representation of Two and More	
		Gaussian Variables	35
	5	Summary	36
Par	t II	Statistical Full-Chip Power Analysis	
3	Tr	aditional Statistical Leakage Power Analysis Methods	39
	1	Introduction	39
	2	Static Leakage Modeling	40
		2.1 Gate-Based Static Leakage Model	41
		2.2 MOSFET-Based Static Leakage Model	44
	3	Process Variational Models for Leakage Analysis	45
	4	Full-Chip Leakage Modeling and Analysis Methods	49
		4.1 Monte Carlo Method	49
		4.2 Traditional Grid-Based Methods	49
		4.3 Projection-Based Statistical Analysis Methods	53
	5	Summary	53
4	Sta	ntistical Leakage Power Analysis by Spectral Stochastic Method	55
	1	Introduction	55
	2	Flow of Gate-Based Method	56
		2.1 Random Variables Transformation and Reduction	57
		2.2 Computation of Full-Chip Leakage Currents	58
		2.3 Time Complexity Analysis	60
	3	Numerical Examples	60
	4	Summary	63
5	Li	near Statistical Leakage Analysis by Virtual Grid-Based Modeling	65
	1	Introduction	65
	2	Virtual Grid-Based Spatial Correlation Model	67
	3	Linear Chip-Level Leakage Power Analysis Method	69
		3.1 Computing Gate Leakage by the Spectral Stochastic Method	70
		3.2 Computation of Full-Chip Leakage Currents	71
		3.3 Time Complexity Analysis	71
	4	New Statistical Leakage Characterization in SCL	72
		4.1 Acceleration by Look-Up Table Approach	72
		4.2 Enhanced Algorithm	73
		4.3 Computation of Full-Chip Leakage Currents	75

		4.4 Incremental Leakage Analysis	76
		4.5 Time Complexity Analysis	77
		4.6 Discussion of Extension to Statistical Runtime	
		4.7 Discussion short Durting Lashage Deduction Technicus	70
	5	4./ Discussion about Runtime Leakage Reduction Technique	79
	3	5.1 A server and CDLUTime	/9
		5.1 Accuracy and CPU Time	80
	6	5.2 Incremental Analysis	82
	0	Summary	82
6	Sta	atistical Dynamic Power Estimation Techniques	83
	1	Introduction	83
	2	Prior Works	85
		2.1 Existing Relevant Works	85
		2.2 Segment-Based Power Estimation Method	86
	3	The Presented New Statistical Dynamic Power Estimation Method	87
		3.1 Flow of the Presented Analysis Method	87
		3.2 Acceleration by Building the Look-Up Table	88
		3.3 Statistical Gate Power with Glitch Width Variation	89
		3.4 Computation of Full-Chip Dynamic Power	89
	4	Numerical Examples	90
	5	Summary	92
7	Sta	atistical Total Power Estimation Techniques	93
	1	Introduction	93
	2	Review of the Monte Carlo-Based Power Estimation Method	95
	3	The Statistical Total Power Estimation Method	96
		3.1 Flow of the Presented Analysis Method Under Fixed	
		Input Vector	97
		3.2 Computing Total Power by Orthogonal Polynomials	97
		3.3 Flow of the Presented Analysis Method Under	
		Random Input Vectors	98
	4	Numerical Examples	99
	5	Summary	103
Dom	4 111	Waviational On Chin Dawan Daliyany Natural	
rar	ι 111	Analysis	
		v	
8	Sta	atistical Power Grid Analysis Considering Log-Normal	
	Le	akage Current Variations	107
	1	Introduction	107
	2	Previous Works	108
	3	Nominal Power Grid Network Model	109

3	Nominal Power Grid Network Model	109
4	Problem Formulation	111

	5	Statistical Power Grid Analysis Based on Hermite PC	112
		5.1 Galerkin-Based Spectral Stochastic Method	112
		5.2 Spatial Correlation in Statistical Power Grid Analysis	114
	,	5.3 Variations in Wires and Leakage Currents	115
	6	Numerical Examples.	117
		6.1 Comparison with Taylor Expansion Method	118
		6.2 Examples without Spatial Correlation	119
		6.3 Examples with Spatial Correlation	122
	7	6.4 Consideration of variations in Both wire and Currents	123
0	/	stininal y	120
9	Sli Kn	ulsucal Power Griu Analysis by Stochastic Extended	127
	1	Introduction	127
	1	Problem Formulation	127
	2	Review of Extended Krylov Subspace Method	120
	5 4	The Stochastic Extended Krylov Subspace Method—StoEKS	120
	т	4.1 StoFKS Algorithm Flowchart	130
		4.2 Generation of the Augmented Circuit Matrices	130
		4.3 Computation of Hermite PCs of Current Moments	100
		with Log-Normal Distribution	133
		4.4 The StoEKS Algorithm	135
		4.5 A Walk-Through Example	136
		4.6 Computational Complexity Analysis	137
	5	Numerical Examples	138
	6	Summary	143
10	Sta	tistical Power Grid Analysis by Variational Subspace Method	145
	1	Introduction	145
	2	Review of Fast Truncated Balanced Realization Methods	146
		2.1 Standard Truncated Balanced Realization Methods	146
		2.2 Fast and Approximate TBR Methods	147
	2	2.3 Statistical Reduction by Variational TBR	148
	3	The Presented Variational Analysis Method: varETBR	148
		3.1 Extended Truncated Balanced Realization Scheme	148
	4	3.2 The Presented Variational ETBR Method	150
	4	Numerical Examples	152
	5	Summary	128
Par	t IV	Statistical Interconnect Modeling and Extractions	

11	Statistical Capacitance Modeling and Extraction		
	1	Introduction	163
	2	Problem Formulation	165
	3	Presented Orthogonal PC-Based Extraction Method: StatCap	166
		3.1 Capacitance Extraction Using Galerkin-Based Method	166

		3.2 Expansion of Potential Coefficient Matrix	167
		3.3 Formulation of the Augmented System	170
	4	Second-Order <i>StatCap</i>	171
		4.1 Derivation of Analytic Second-Order Potential	
		Coefficient Matrix	172
		4.2 Formulation of the Augmented System	173
	5	Numerical Examples	174
	6	Additional Notes	177
	7	Summary	182
12	In	cremental Extraction of Variational Capacitance	183
	1	Introduction	183
	2	Review of GRMES and FMM Algorithms	184
		2.1 The GMRES Method	184
		2.2 The Fast Multipole Method	184
	3	Stochastic Geometrical Moment	185
		3.1 Geometrical Moment	186
		3.2 Orthogonal PC Expansion	188
	4	Parallel Fast Multipole Method with SGM	189
		4.1 Upward Pass	190
		4.2 Downward Pass	191
		4.3 Data Sharing and Communication	191
	5	Incremental GMRES	193
		5.1 Deflated Power Iteration	194
		5.2 Incremental Precondition	194
	6	piCAP Algorithm	196
		6.1 Extraction Flow	196
		6.2 Implementation Optimization	198
	7	Numerical Examples	199
		7.1 Accuracy Validation	199
		7.2 Speed Validation	202
		7.3 Eigenvalue Analysis	205
	8	Summary	207
13	Sta	atistical Inductance Modeling and Extraction	209
	1	Introduction	209
	2	Problem Formulation	210
	3	The Presented Statistical Inductance Extraction Method-statHenry.	212
		3.1 Variable Decoupling and Reduction	212
		3.2 Variable Reduction by Weighted PFA	213
		3.3 Flow of statHenry Technique	214
	4	Numerical Examples	214
	5	Summary	218

Part V	Statistical	Analog	and	Yield	Analysis
	and Optim	ization '	Tech	niques	

14 Performance Bound Analysis of Variational Linearia		rformance Bound Analysis of Variational Linearized	221
	Ar	alog Circuits	221
	1	Introduction	221
	2	Review of Interval Arithmetic and Affine Arithmetic	222
	3	The Performance Bound Analysis Method Based	
		on Graph-based Symbolic Analysis	223
		3.1 Variational Transfer Function Computation	223
		3.2 Performance Bound by Kharitonov's Functions	228
	4	Numerical Examples	230
	5	Summary	233
15	Ste	ochastic Analog Mismatch Analysis	235
	1	Introduction	235
	2	Preliminary	237
		2.1 Review of Mismatch Model	237
		2.2 Nonlinear Model Order Reduction	237
	3	Stochastic Transient Mismatch Analysis	239
		3.1 Stochastic Mismatch Current Model	239
		3.2 Perturbation Analysis	240
		3.3 Non-Monte Carlo Analysis by Spectral Stochastic Method	240
		3.4 A CMOS Transistor Example	242
	4	Macromodeling for Mismatch Analysis	242
		4.1 Incremental Trajectory-Piecewise-Linear Modeling	243
		4.2 Stochastic Extension for Mismatch Analysis	246
	5	Numerical Examples	247
		5.1 Comparison of Mismatch Waveform-Error and Runtime	248
		5.2 Comparison of TPWL Macromodel	251
	6	Summary	252
16	Sta	atistical Yield Analysis and Optimization	253
	1	Introduction	253
	2	Problem Formulations	254
	3	Stochastic Variation Analysis for Yield Analysis	256
		3.1 Algorithm Overview	258
		3.2 Stochastic Yield Estimation and Optimization	259
		3.3 Fast Yield Calculation	259
		3.4 Stochastic Sensitivity Analysis	260
		3.5 Multiobjective Optimization	262
	4	Numerical Examples	265
		4.1 NMC Mismatch for Yield Analysis	266
		4.2 Stochastic Yield Estimation	266
		4.3 Stochastic Sensitivity Analysis	268
		4.4 Stochastic Yield Optimization	270
	5	Summary	272

17	Vo	Itage Binning Technique for Yield Optimization	273
	1	Introduction	273
	2	Problem Formulation	274
		2.1 Yield Estimation	274
		2.2 Voltage Binning Problem	275
	3	The Presented Voltage Binning Method	276
		3.1 Voltage Binning Considering Valid Segment	277
		3.2 Bin Number Prediction Under Given Yield Requirement	278
		3.3 Yield Analysis and Optimization	280
	4	Numerical Examples	281
		4.1 Setting of Process Variation	282
		4.2 Prediction of Bin Numbers Under Yield Requirement	282
		4.3 Comparison Between Uniform and Optimal Voltage	
		Binning Schemes	283
		4.4 Sensitivity to Frequency and Power Constraints	284
		4.5 CPU Times	284
	5	Summary	285
Ref	ere	nces	287
Ind	ex.		299

List of Figures

OPT and PSM procedures in the manufacture process	5
Chemical and mechanical polishing (CMP) process	6
The dishing and oxide erosion after the CMP process	7
The comparison of circuit total power distribution	
of circuit c432 in ISCAS'85 benchmark sets (top)	
under random input vectors (with 0.5 input signal	
and transition probabilities) and (bottom) under a	
fixed input vector with effective channel length spatial	
correlations. Reprinted with permission from [62]	
© 2011 IEEE	9
Grid-based model for spatial correlations	24
Subthreshold leakage currents for four different input	
patterns in AND2 gate under 45 nm technology	42
Gate oxide leakage currents for four different input	
patterns in AND2 gate under 45 nm technology	43
Typical layout of a MOSFET	44
Procedure to derive the effective gate channel length model	45
An example of a grid-based partition. Reprinted with	
permission from [157] © 2010 Elsevier	56
The flow of the presented algorithm	57
Distribution of the total leakage currents of the	
presented method, the grid-based method, and the MC	
method for circuit SC0 (process variation parameters	
set as Case 1). Reprinted with permission from [157]	
© 2010 Elsevier	62
	OPT and PSM procedures in the manufacture process Chemical and mechanical polishing (CMP) process The dishing and oxide erosion after the CMP process The comparison of circuit total power distribution of circuit c432 in ISCAS'85 benchmark sets (<i>top</i>) under random input vectors (with 0.5 input signal and transition probabilities) and (<i>bottom</i>) under a fixed input vector with effective channel length spatial correlations. Reprinted with permission from [62] © 2011 IEEE Grid-based model for spatial correlations Subthreshold leakage currents for four different input patterns in AND2 gate under 45 nm technology Gate oxide leakage currents for four different input patterns in AND2 gate under 45 nm technology Typical layout of a MOSFET Procedure to derive the effective gate channel length model An example of a grid-based partition. Reprinted with permission from [157] © 2010 Elsevier The flow of the presented algorithm Distribution of the total leakage currents of the presented method, the grid-based method, and the MC method for circuit SC0 (process variation parameters set as Case 1). Reprinted with permission from [157] © 2010 Elsevier

Fig. 5.1	Location-dependent modeling with the $T(i)$ of grid cell <i>i</i> defined as its seven neighbor cells. Reprinted with	
	permission from [159] © 2010 IEEE	68
Fig. 5.2	The flow of the presented algorithm	70
Fig. 5.3	Relation between $\rho(d)$ and d/η	72
Fig. 5.4	The flow of statistical leakage characterization in SCL	74
Fig. 5.5	The flow of the presented algorithm using statistical	
•	leakage characterization in SCL	74
Fig. 5.6	Simulation flow for full-chip runtime leakage	78
Fig. 6.1	The dynamic power versus effective channel length for	
	an AND2 gate in 45 nm technology (70 ps active pulse	
	as partial swing, 130 ps active pulse as full swing).	
	Reprinted with permission from [60] © 2010 IEEE	84
Fig. 6.2	A transition waveform example $\{E_1, E_2, \ldots, E_m\}$ for a	
	node. Reprinted with permission from [60] © 2010 IEEE	86
Fig. 6.3	The flow of the presented algorithm	87
Fig. 6.4	The flow of building the sub LUT	88
Fig. 7.1	The comparison of circuit total power distribution	
	of circuit c432 in ISCAS'85 benchmark sets (top)	
	under random input vectors (with 0.5 input signal	
	and transition probabilities) and (bottom) under a	
	fixed input vector with effective channel length spatial	
	correlations. Reprinted with permission from [62]	
	© 2011 IEEE	94
Fig. 7.2	The flow of the presented algorithm under a fixed input vector	97
Fig. 7.3	The selected power points a, b, and c from the power	
U	distribution under random input vectors. Reprinted with	
	permission from [62] © 2011 IEEE	99
Fig. 7.4	The flow of the presented algorithm with random input	
8	vectors and process variations	100
Fig 75	The comparison of total power distribution PDF and	100
1.8. 1.10	CDF between STEP method and MC method for	
	circuit c880 under a fixed input vector Reprinted with	
	permission from [62] @ 2011 IEEE	101
Fig 76	The comparison of total power distribution PDF and	101
11g. 7.0	CDE between STEP method and Monte Carlo method	
	for circuit a 220 under rendom input vector. Deprinted	
	with normission from [62] @ 2011 IEEE	102
	with permission from [02] (C) 2011 IEEE	103
Fig. 8.1	The power grid model used	110

Fig. 8.2	Distribution of the voltage in a given node with one	
	Gaussian variable, $\sigma_g = 0.1$, at time 50 ns when	
	the total simulation time is 200 ns. Reprinted with	
	permission from [109] © 2008 IEEE	120
Fig. 8.3	Distribution of the voltage caused by the leakage	
•	currents in a given node with one Gaussian variable,	
	$\sigma_g = 0.5$, in the time instant from 0 ns to 126 ns.	
	Reprinted with permission from [109] (c) 2008 IEEE	120
Fig. 8.4	Distribution of the voltage in a given node with two	
U	Gaussian variables, $\sigma_{a1} = 0.1$ and $\sigma_{a2} = 0.5$, at	
	time 50 ns when the total simulation time is 200 ns.	
	Reprinted with permission from [109] (c) 2008 IEEE	121
Fig. 8.5	Correlated random variables setup in ground circuit	
0	divided into two parts. Reprinted with permission from	
	[109] © 2008 IEEE	122
Fig. 8.6	Distribution of the voltage in a given node with	
0	two Gaussian variables with spatial correlation, at	
	time 70 ns when the total simulation time is 200 ns.	
	Reprinted with permission from [109] © 2008 IEEE	123
Fig. 8.7	Correlated random variables setup in ground circuit	
8	divided into four parts. Reprinted with permission from	
	[109] © 2008 IEEE	123
Fig. 8.8	Distribution of the voltage in a given node with	
8	four Gaussian variables with spatial correlation, at	
	time 30 ns when the total simulation time is 200 ns.	
	Reprinted with permission from [109] © 2008 IEEE	124
Fig. 8.9	Distribution of the voltage in a given node with	
1.8.00	circuit partitioned of 5×5 with spatial correlation at	
	time 30 ns when the total simulation time is 200 ns.	
	Reprinted with permission from [109] © 2008 IEEE	124
Fig 8 10	Distribution of the voltage in a given node in circuit5	121
115.0.10	with variation on G C L at time 50 ns when the total	
	simulation time is 200 ns. Reprinted with permission	
	from [109] © 2008 IFFE	125
		120
Fig 91	The EKS algorithm	129
Fig. 9.2	Flowchart of the StoEKS algorithm Reprinted with	12)
1.8. >.=	permission from [110] © 2008 IEEE	131
Fig. 9.3	The StoEKS algorithm	135
Fig. 9.4	Distribution of the voltage variations in a given node by	100
0. /	StoEKS, HPC, and Monte Carlo of a circuit with 280	
	nodes with three random variables, $g_i(t) = 0.1u_{di}(t)$.	
	Reprinted with permission from [110] \bigcirc 2008 IEEE	139
		157

Fig. 9.5	Distribution of the voltage variations in a given node by StoEKS_HPC_ and MC of a circuit with 2 640	
	nodes with seven random variables $a_i(t) = 0.1 \mu_{ii}(t)$	
	Reprinted with permission from [110] \bigcirc 2008 IEEE	140
Fig. 9.6	Distribution of the voltage variations in a given node by	
8	StoEKS and MC of a circuit with 2.640 nodes with 11	
	random variables $g_i(t) = 0.1 u_{ij}(t)$ Reprinted with	
	nermission from [110] \bigcirc 2008 IEEE	141
Fig 97	A PWL current source at certain node Reprinted with	1 1 1
1 15. 7.7	nermission from [110] © 2008 IEEE	142
Fig 98	Distribution of the voltage variations in a given node	112
1 15. 7.0	by StoEKS HPC and Monte Carlo of a circuit with	
	280 nodes with three random variables using the	
	time invariant leakage model $a_{\rm c} = 0.1I$. Reprinted	
	with permission from [110] \bigcirc 2008 IEEE	1/3
		145
Fig 101	Flow of ETBR	149
Fig. 10.2	Flow of varETBR	152
Fig. 10.2	Transient waveform at the 1 000th node	152
115. 10.5	(n1 20583 11663) of <i>ibmnal</i> $(n - 10, 100 \text{ samples})$	
	Reprinted with permission from [91] \bigcirc 2010 Elsevier	154
Fig. 10.4	Transient waveform at the 1 000th node	154
115. 10.4	$(n_{3}, 16800, 9178400)$ of <i>ibmna6</i> $(n - 10, 10 \text{ samples})$	
	Reprinted with permission from [01] \bigcirc 2010 Elsevier	154
Fig. 10.5	Simulation errors of <i>ibmnal</i> and <i>ibmnab</i> Reprinted	154
11g. 10.5	with permission from $[011] \bigcirc 2010$ Elsevier	155
Fig. 10.6	Palative arrors of <i>ibmaal</i> and <i>ibmaa</i> Paprinted with	155
Fig. 10.0	nermission from [01] @ 2010 Elsevier	155
Fig. 10.7	Valtage distribution at the 1 000th pade of <i>ihmnal</i>	155
Fig. 10.7	(10 000 samples) when $t = 50 \text{ ns}$. Paprinted with	
	(10,000 samples) when $t = 50 Hs.$ Reprinted with	156
		150
Fig 111	A 2 \times 2 bus Reprinted with permission from [156]	
115.11.1	\bigcirc 2010 IFFF	175
Fig. 11.2	Three-layer metal planes Reprinted with permission	175
1 1g. 11.2	from [156] @ 2010 IEEE	176
		170
Fig 12.1	Multipole operations within the FMM algorithm	
1.18. 12.1	Reprinted with permission from [56] @ 2011 IEEE	185
Fig 12.2	Structure of augmented system in piCAP	189
Fig. 12.2	The M2M operation in an unward pass to evaluate local	107
1 16. 12.5	interactions around sources	190
Fig 12.4	The M2L operation in a downward pass to evaluate	170
1 1g. 12.4	interactions of well-senarated source cube and observer cube	102
Fig 12.5	The L 2L operation in a downward pass to sum all integrations	102
1 1g. 12.J	The L2L operation in a downward pass to sum an integrations	173

Fig.	12.6	Prefetch operation in M2L. Reprinted with permission	
		from [56] © 2011 IEEE	193
Fig.	12.7	Stochastic capacitance extraction algorithm	197
Fig.	12.8	Two distant panels in the same plane	200
Fig.	12.9	Distribution comparison between Monte Carlo and piCAP	202
Fig.	12.10	The structure and discretization of two-layer example	
		with 20 conductors. Reprinted with permission from	
		[56] © 2011 IEEE	203
Fig.	12.11	Test structures: (a) plate, (b) cubic, and (c) crossover	
		2×2. Reprinted with permission from [56] © 2011 IEEE	204
Fig.	12.12	The comparison of eigenvalue distributions (panel	
		width as variation source)	206
Fig.	12.13	The comparison of eigenvalue distributions (panel	
		distance as variation source)	207
Fig.	13.1	The statHenry algorithm	214
Fig.	13.2	Four test structures used for comparison	215
Fig.	13.3	The loop inductance $L12_l$ distribution changes for the	
		10-parallel-wire case under 30% width and height variations	217
Fig.	13.4	The partial inductance $L11_p$ distribution changes for	
		the 10-parallel-wire case under 30% width and height variations	218
Fig.	14.1	The flow of the presented algorithm	224
Fig.	14.2	An example circuit. Reprinted with permission from	
		[61]. © 2011 IEEE	224
Fig.	14.3	A matrix determinant and its DDD representation.	
		Reprinted with permission from [61]. © 2011 IEEE	225
Fig.	14.4	(a) Kharitonov's rectangle in state 8. (b) Kharitonov's	
		rectangle for all nine states. Reprinted with permission	
		from [61]. © 2011 IEEE	229
Fig.	14.5	(a) A low-pass filter. (b) A linear model of the op-amp	
		in the low-pass filter. Reprinted with permission from	
		[61]. © 2011 IEEE	231
Fig.	14.6	Bode diagram of the CMOS low-pass filter. Reprinted	
		with permission from [61]. © 2011 IEEE	232
Fig.	14.7	Bode diagram of the CMOS cascode op-amp. Reprinted	
		with permission from [61]. © 2011 IEEE	233
Fig.	15.1	Transient mismatch (the time-varying standard	
		deviation) comparison at output of a BJT mixer with	
		distributed inductor: the exact by Monte CarloN and	
		the exact by orthogonal PC expansion. Reprinted with	_
		permission from [52]. (c) 2011 ACM	249

Fig.	15.2	Transient nominal $(x^{(0)}(t))$ (a) and transient mismatch	
8.		$(\alpha_1(t))$ (b) for one output of a COMS comparator by	
		the exact orthogonal PC and the isTPWL Reprinted	
		with permission from [52]. © 2011 ACM	249
Fig	153	Transient waveform comparison at output of a diode	
8.	1010	chain: the transient nominal the transient with	
		mismatch by SiSMA (adding mismatch at <i>ic</i> only)	
		the transient with mismatch by the presented method	
		(adding mismatch at transient trajectory) Reprinted	
		with permission from [52] @ 2011 ACM	250
Ein	15 /	Transient mismetch (c. (t) the time verying standard	230
Fig.	13.4	Transfert information $(\alpha_1(t))$, the time-varying standard	
		deviation) comparison at output of a BJ1 mixer with	
		distributed substrate: the exact by OPC expansion, the	
		macromodel by TPWL (order 45), and the macromodel	
		by 1s IPWL (order 45). The waveform by 1s IPWL 1s	
		visually identical to the exact OPC. Reprinted with	
		permission from [52]. (c) 2011 ACM	250
Fig.	15.5	(a) Comparison of the ratio of the waveform error by	
		TPWL and by isTPWL under the same reduction order.	
		(b) comparison of the ratio of the reduction runtime by	
		maniMOR and by is TPWL under the same reduction	
		order. In both cases, is TPWL is used as the baseline.	
		Reprinted with permission from [52]. (c) 2011 ACM	251
Fig.	16.1	Example of the stochastic transient variation or mismatch	254
Fig.	16.2	Distribution of output voltage at t_{max}	255
Fig.	16.3	Parametric yield estimation based on orthogonal	
e		PC-based stochastic variation analysis	260
Fig.	16.4	Stochastic yield optimization	263
Fig.	16.5	Power consumption optimization	264
Fig.	16.6	Schematic of operational amplifier	266
Fig.	16.7	NMC mismatch analysis vs. Monte Carlo for	
e		operational amplifier case	267
Fig.	16.8	Schematic of Schmitt trigger	268
Fig.	16.9	Comparison of Schmitt trigger example	269
Fig.	16.10	Schematic of SRAM 6-T cell	270
Fig.	16.11	Voltage distribution at <i>BL_B</i> node	271
Fig.	16.12	NMC mismatch analysis vs. MC	271
0			
Fig.	17.1	The algorithm sketch of the presented new voltage	
		binning method	276
Fig.	17.2	The delay and power change with supply voltage for C432	277
Fig.	17.3	Valid voltage segment graph and the voltage binning solution	278
Fig.	17.4	Histogram of the length of valid supply voltage segment	
		len for C432	279

List of Figures

Fig. 17.5	The flow of greedy algorithm for covering most	
	uncovered elements in <i>S</i>	281
Fig. 17.6	Yield under uniform and optimal voltage binning	
	schemes for C432	284
Fig. 17.7	Maximum achievable yield as function of power and	
	performance constraints for C2670	285

List of Tables

Table 3.1	Different methods for full-chip SLA	40
Table 3.2	Relative errors by using different fitting formulas for	
	leakage currents of AND2 gate	43
Table 3.3	Process variation parameter breakdown for 45 nm technology	46
Table 4.1	Process variation parameter breakdown for 45 nm technology	61
Table 4.2	Comparison of the mean values of full-chip leakage	
	currents among three methods	62
Table 4.3	Comparison standard deviations of full-chip leakage	
	currents among three methods	63
Table 4.4	CPU time comparison among three methods	63
Table 5.1	Summary of test cases used in this chapter	80
Table 5.2	Accuracy comparison of different methods based on	
	Monte Carlo	81
Table 5.3	CPU time comparison	81
Table 5.4	Incremental leakage analysis cost	82
Table 6.1	Summary of benchmark circuits	91
Table 6.2	Statistical dynamic power analysis accuracy	
	comparison against Monte Carlo	91
Table 6.3	CPU time comparison	92
Table 7.1	Summary of benchmark circuits	100
Table 7.2	Total power distribution under fixed input vector	101
Table 7.3	Sampling number comparison under fixed input vector	101
Table 7.4	Total power distribution comparison under random	
	input vector and spatial correlation	102

Table 8.1	Accuracy comparison between Hermite PC (HPC)	
	and Taylor expansion	119
Table 8.2	CPU time comparison with the Monte Carlo method	
	of one random variable	121
Table 8.3	CPU time comparison with the Monte Carlo method	
	of two random variables	121
Table 8.4	Comparison between non-PCA and PCA against	
	Monte Carlo methods	122
Table 8.5	CPU time comparison with the MC method	
	considering variation in G,C,I	125
Table 9.1	CPU time comparison of StoEKS and HPC with the	
	Monte Carlo method. $g_i(t) = 0.1 u_{di}(t)$	141
Table 9.2	Accuracy comparison of different methods, StoEKS,	
	HPC, and MC. $g_i(t) = 0.1 u_{di}(t)$	142
Table 9.3	Error comparison of StoEKS and HPC over Monte	
	Carlo methods. $g_i(t) = 0.1 u_{di}(t)$	142
Table 10.1	Power grid (PG) benchmarks	153
Table 10.2	CPU times (s) comparison of varETBR and Monte	100
	Carlo $(a = 50, p = 10)$	156
Table 10.3	Projected CPU times (s) comparison of varETBR and	
	Monte Carlo ($q = 50, p = 10, 10,000$ samples)	157
Table 10.4	Relative errors for the mean of max voltage drop of	
	varETBR compared with Monte Carlo on the 2,000th	
	node of $ibmpg1$ ($q = 50$, $p = 10$, 10,000 samples) for	
	different variation ranges and different numbers of variables	157
Table 10.5	Relative errors for the variance of max voltage drop of	
	varETBR compared with Monte Carlo on the 2,000th	
	node of $ibmpg1$ ($q = 50, p = 10, 10,000$ samples)	
	for different variation ranges and different numbers of variables .	157
Table 10.6	CPU times (s) comparison of StoEKS and varETBR	
	(q = 50, p = 10) with 10,000 samples for different	
	numbers of variables	158
Table 11.1	Number of nonzero element in <i>W</i> _i	174
Table 11.2	The test cases and the parameters setting	175
Table 11.3	CPU runtime (in seconds) comparison among MC,	
	SSCM, and <i>StatCap(1st/2nd)</i>	176
Table 11.4	Capacitance mean value comparison for the 1×1 bus	177
Table 11.5	Capacitance standard deviation comparison for the	
	1×1 bus	177
Table 11.6	Error comparison of capacitance mean values among	
	SSCM, and <i>StatCap</i> (first- and second-order)	178

Table 11.7	Error comparison of capacitance standard deviations among SSCM, and <i>StatCap</i> (first- and second-order)	179
T 1 1 1 0 1		200
Table 12.1	Accuracy comparison of two orthogonal PC expansions	200
Table 12.2	Incremental analysis versus MC method	201
Table 12.3	Accuracy and runtime(s) comparison between	
	MC(3,000), <i>piCap</i>	201
Table 12.4	MVP runtime (s)/speedup comparison for four	
	different examples	203
Table 12.5	Runtime and iteration comparison for different examples	204
Table 12.6	Total runtime(s) comparison for two-layer	
	20-conductor by different methods	205
Table 13.1	Accuracy comparison (mean and variance values of	
	inductances) among MC, HPC, and <i>statHenry</i>	216
Table 13.2	CPU runtime comparison among MC, HPC, and <i>statHenry</i>	216
Table 13.3	Reduction effects of PFA and wPFA	216
Table 13.4	Variation impacts on inductances using <i>statHenry</i>	217
Table 14.1	Extreme values of $ P(i\omega) $ and $ArgP(i\omega)$ for	
14010 1 1.1	nine states	229
Table 14.2	Summary of coefficient radius reduction with cancellation	231
Table 14.3	Summary of DDD information and performance of	201
10010 1 1.5	the presented method	231
Table 15.1	Scalability comparison of runtime and error for the	
Table 15.1	scalability comparison of functine and error for the	
	the isTDWL measured al with OPC	210
	the ISTPWL macromodel with OPC	248
Table 16.1	Comparison of accuracy and runtime	267
Table 16.2	Comparison of accuracy and runtime	268
Table 16.3	Sensitivity of ξ_{output} with respect to each MOSFET	
	width variation ξ_{p_i}	269
Table 16.4	Sensitivity of $\xi_{v_{BL}B}$ and ξ_{power} with respect to each	
	MOSFET width variation ξ_{p_i}	271
Table 16.5	Comparison of different yield optimization algorithms	
	for SRAM cell	272
Table 17.1	Predicted and actual number of bins needed under	
	yield requirement	282
Table 17.2	Yield under uniform and optimal voltage binning	
	schemes (%)	283
Table 17.3	CPU time comparison(s)	285
	I	