Chapter 12
Service Levels, Security, and Trust*

Florian Marienfeld, Edzard Hofig, Michele Bezzi, Matthias Fliigge, Jonas Pattberg,
Gabriel Serme, Achim D. Brucker, Philip Robinson, Stephen Dawson, and
Wolfgang Theilmann

Abstract This chapter covers the scientific background for the Service Level Mod-
ule of the Unified Service Description Language (USDL). In addition to general
service level concepts, we expand on two specific service level fields: security and
trust. For that end we first review the state of the art in service level modeling, then
we explain the design of the Service Level Module and position it among the rest
of USDL. For security, two possible perspectives, a high level business view and
a low level engineering approach, are introduced. With regards to trust, USDL is
suitable to specify how a service can be rated by its consumers and to ensure that
ratings of competing services are comparable, and hence to determine trustworthi-
ness. Additionally, we present a description of non-security-related elements that
can be exploited for trust estimation.

* In Alistair Barros, Daniel Oberle (eds.): Handbook of Service Description: USDL and its
Methods, Part 11, Chapter 12, pages 295-326. Springer, New York, 2011.

Florian Marienfeld, Edzard Hofig, Matthias Fliigge, Jonas Pattberg
Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany,
e-mail: firstname.lastname@fokus.fraunhofer.de

Michele Bezzi, Gabriel Serme
SAP Research Sophia-Antipolis, 805, Avenue du Dr. Maurice Donat, 06250 Mougins, France,
e-mail: michele.bezzi@sap.com, e-mail: gabriel.serme@sap.com

Achim D. Brucker, Wolfgang Theilmann
SAP Research Karlsruhe, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany,
e-mail: achim.brucker@sap.com, e-mail: wol fgang.theilmann@sap.com

Philip Robinson, Stephen Dawson

SAP Research Belfast, Concourse, Queen’s Road, Queen’s Island, Titanic Quarter, BT3 9DT
Belfast, United Kingdom,

e-mail: philip.robinson@sap.com, e-mail: stephen.dawson@sap.com

297

firstname.lastname@fokus.fraunhofer.de
michele.bezzi@sap.com
gabriel.serme@sap.com
achim.brucker@sap.com
wolfgang.theilmann@sap.com
philip.robinson@sap.com
stephen.dawson@sap.com

298 Marienfeld et al.

12.1 Introduction

The USDL Service Level Module captures concepts concerned with guarantees re-
garding quality of service operation, which are claimed/requested by different actors
involved in the provisioning, delivery and consumption of a service. Given the role
of service levels as a vital component of any commercial transaction, it is striking to
see how poorly service levels are supported in commercial offerings and also to see
the lack of a systematic approach to these in the research arena. Most approaches
are missing formal semantics, leave fine-grained content unspecified, lack flexibility
and are tuned to specific scenarios and domains. Based on the research results of the
SLA@SOI project [21], the USDL effort tries to avoid these shortcomings.

We advocate that a comprehensive, applicable and executable service level meta-
model such as the one we contribute is crucial to realize the vision of the Internet
of Services (IoS), for it represents a key enabler of effective and efficient service
discovery, trade and consumption. It basically gives both, service providers and
customers dependability on the quality levels a service comes with and the related
obligations of the involved stakeholders.

In our view, two special service level topics deserve to be discussed in more
detail in this chapter: security related concepts are actually realized as part of the
service level module; trust related elements in contrast, are technically located in
other modules, but are conceptually most closely related to SLA. Therefore, they
are covered here, too.

There are a number of security focused service description languages, which
express the security properties of services and service message exchanges in a stan-
dardized way. However, they are often not sufficient to address new scenarios where
security is becoming a key aspect in business decisions. The USDL security ele-
ments we present in this part of the chapter are a description of security and trust
aspects of a service, making the bridge between the IT level and the business level.

As for other USDL modules, the security part provides a minimal set of elements
to allow for simple and fast description of security features of services. More tech-
nical descriptions can be integrated in the USDL, using appropriate references to
standard security description languages.

The question of trust is closely related to security, yet subtly different. When
concerned with security, one assumes that chosen business partners, i.e., providers,
are both competent and benevolent and considers threats emanating from third par-
ties. With many principals unknown to each other, however, this assumption does
not hold, and some prediction has to be made, regarding the reliability of potential
partners. The means to perform this calculation and to track and communicate trust
information are quite different from those that serve to secure operation against in-
terference from external entities. Nevertheless, trust has a dependency on security,
since a smart choice about the provider is worthless if no appropriate security mech-
anisms are in place. In the traditional world of business services a human user can
partly assess the trustworthiness relying on cues like brand of the provider, “word of
mouth” recommendations [7] and perceived quality of the website [5]. This does not
scale to the level of an Internet of Services, where services are automatically com-

12 Service Levels, Security, and Trust’ 299

posed and delivered with limited human intervention, and explicit trust and security
properties are becoming a key for a broad adoption of service technology [17].

The structure of this chapter is the following: In the subsequent Section 12.2 we
review related approaches. In Section 12.3 we position the Service Level Module
among the other modules and layout its content. Section 12.4 introduces the USDL
representation of security properties. Trust awareness is covered in Section 12.5.
Conclusions are drawn in the Section 12.6.

12.2 State of the Art

The state of the art in SLA specification and management motivates the features of
USDL. USDL is a synthesis and generalization of existing specifications, capturing
the essential elements of an SLA specification. In doing so it satisfies key require-
ments for SLA management and enables new business-oriented aspects of service
management (e.g., security and privacy) to be encoded in SLA documents. SLA
Management includes the specification of machine and human readable documents,
the configuration of systems based on the content of these documents and the mon-
itoring of parameters expressed in these documents in order to achieve compliance.
Failure to achieve SLA compliance can lead to losses in efficiency, performance,
reputation and business opportunities. This section discusses the state of the art
in SLA specification, monitoring, negotiation and enforcement as well as security
models. A comprehensive solution to SLA management addresses each of these
areas. For each area of SLA management the requirements and challenges are de-
scribed, such that existing approaches can be compared to the SLA principles of the
USDL Service Level Module.

12.2.1 SLA Specification

SLA specification can be viewed as both a process and a document. It is the process
of a service consumer initially declaring and agreeing to specific service require-
ments, when entering a contract with a service operator or provider. The consumer
hence specifies Service Level Objectives (SLOs), before or after the availability and
capability of services and service providers are known. In the case this is done be-
forehand, SLOs are used for service discovery. If SLOs are specified when the ser-
vice and provider are known, this is the process of initiating or requesting the pro-
visioning of a specific service on their behalf. From the provider’s perspective it is
the process of declaring their service capabilities and quality guarantees in a form of
advertisement. This is also known as a Service Level Agreement Template (SLAT),
and acts as the baseline for contractual agreement with customers, potentially in dif-
ferent classes. The specified documents all have the same minimal requirements for
structure and content:

300 Marienfeld et al.

Definition of individuals, organizations and roles involved in the agreement. The
roles are typically consumer/customer and provider/operator, but can also include
a third-party broker, an intermediate actor in the SLA management process.
Functional description of the service’s purpose and capabilities. In the case of a
technical, IT service, such as a Web service, the functional description refers to
the set of operations, methods and parameters. For example, the Web-Services
Description Language (WSDL) provides a standard specification for SOAP-
based Web services.

Costs to the consumer for receiving the service. The units for costs are defined
by relating financial costs to utility functions of the resources consumed by the
service. For example costs can be defined per requests, per volume of storage
used, per user or on a fixed-term or unlimited basis.

Guarantee or Quality of Service (QoS) terms define the non-functional properties
of the service. These properties include availability, performance, response time,
reliability and security.

Compensation terms define what the consumer can rightfully demand from the
service provider in return, should the functional or guarantee terms not be ful-
filled.

The distinction between a SLA document and a configuration document for a

service infrastructure is becoming increasingly fuzzy. The contents of a SLA are
inevitably translated into concrete configuration directives that are used to guide the
provisioning of resources, deployment of software and tuning of settings to enable
effective operation of the service. Effective operation means that all functional and
non-functional terms in the SLA can be satisfied without exploding costs for the
provider. Providers need to keep their costs down so that they can offer an attractive
service deal to consumers without sacrificing their profit targets. Given that this
becomes a more complex problem for human operators to deal with manually and
rapidly, the following new requirements arise for SLA specifications in a world of
service management automation:

1.

SLA specifications need to be both human and machine readable, given that
people need to define, exchange and agree terms, while algorithms are required
to parse, extract and analyze terms, and translate terms and analysis results to
configuration directives in an efficient and accurate manner.

Traceability to organizational Key Performance Indicators (KPIs) such as per-
formance, availability and cost.

All terms must be associated with concrete metrics that enable them to be mon-
itored and audited.

Sufficiently flexible for application in different service operation domains and
contexts.

Support for the entire SLA life cycle, including negotiation, provisioning, mon-
itoring and decommissioning.

There are various specification languages in existence, each with different mo-

tives but similar concepts. The Open Grid Forums’s WebService-Agreement [1] and

12 Service Levels, Security, and Trust? 301

IBM’s Web Service Level Agreement (WSLA [12]) are the most well-known lan-
guages for expressing SLAs. WSLA is a comprehensive specification for describing
SLAs for Web services, providing a template for defining concrete metrics. WSLA
however does not support the entire life cycle of SLAs, as negotiation of terms is
not supported for flexibility. WS-Agreement superseded WSLA in order to address
these points. While WS-Agreement is very flexible, given its generality, and pro-
vides a comprehensive schema that enables human and machine interpretation, it
still requires more concrete metrics and explicit traceability to KPIs. Another point
to mention is that WSLA and WS-Agreement were developed for WSDL-type Web
services and hence do not have the semantics included for dealing with non-WSDL
services.

There are other specifications existing that are not tied to WSDL. SLAng [9] for
example is specified in the Object Management Group’s (OMG) Meta Object Facil-
ity (MOF) and, thus, has a degree of language independence with mappings to XML
and Human-Usable Textual Notation (HUTN). SLAng also places greater empha-
sis on semantics, providing formal notions of SLA compatibility, monitorability and
constrained service behaviour. It is, however, targeted at electronic services and pro-
vides only a limited set of domain-specific QoS constraints. Another language, viz.,
CC-Pi [2] is more generic, offering a theoretical framework for mapping SLAs to
service constraints. The CC-Pi model is, however, tightly-coupled to the mechanics
of negotiation, and does not address common constructs such as agreement party
details or service interfaces. The SLA* approach from SLA@SOI [8], in contrast,
is a complete abstract SLA syntax which has been designed to be independent of
underlying technologies. It is decoupled both from particular notions of service,
and from particular modes of expression, and can be extended to diverse scenarios
without sacrificing formality or semantics.

12.2.2 SLA Monitoring

The formal specification of SLAs enables monitoring the status and compliance
of services with the organizational KPIs of the parties involved. As stated in the
previous section, in order to monitor aspects of a service’s operation, it must be
possible to measure that aspect using concrete metrics. There are critical areas of
service and resource management that depend on this information and delivering
it to the right people and systems in a timely manner. These are discussed in the
following and are the set of standard activities defined for IT Service Management
(ITSM) in the Information Technology Infrastructure Library (ITIL).3

Capacity planning and management involves the allocation of resources in or-
der to avoid over-spending, wastage and under-provisioning. However, there is
still the over-arching objective of satisfying the obligations and guarantees stated
in SLAs. Resources include people, hardware, software licenses, software in-

3http://www.itil-officialsite.com

http://www.itil-officialsite.com

302 Marienfeld et al.

stances and materials. SLA monitoring is the timely update of information about
resource capabilities, availabilities and performance during operation. In order
for services to be delivered efficiently in an on-demand manner, there is a need
for mixing historical, predictive and live information about resources for dynamic
replanning and provisioning of resources. In the case of people this includes the
assignment of tasks and access to resources through justifiable provisioning of
users and assignment of privileges.

Availability analysis and management is the set of activities done to maximize
the likelihood that resources will be available when required, as well as recov-
erable from unsafe or fault states. Availability is both an explicit and implicit
objective of SLA management. As an explicit objective the guarantees of avail-
ability and recovery are agreed in the SLA. As an implicit objective an analyst
or management system needs to monitor the resource to identify when associ-
ated services are required. This also has relations to capacity planning and man-
agement, as the sizing and number of resources will change the availability of
services.

Operations management is the coordination tasks and processes amongst re-
sources to ensure that the KPIs of an organization are met, along with the objec-
tives in the SLAs the organization has with customers and partners. SLA moni-
toring should provide feedback about the current load on different resources and
the criticality of service request to be handled. Operations management usually
includes optimization of handling service requests and assigning tasks based on
multiple objectives. These multiple objectives are derived from the set of ob-
jectives in multiple SLAs, such that conflicts and contentions will arise in an
environment that allows concurrent services and service users.

Incident management is the handling of inevitable failures and unexpected events
that arise during service operation. Capacity planning has to take incident man-
agement into account, as redundant resources and back-up resources usually need
to be deployed to for executing contingency plans. Incident management is also
related to availability analysis and management, as effective incident manage-
ment increases the likelihood that resources and services will be available even
if experiencing known and unexpected incidents. Operations management also
extends to incident management, as the coordination of resources during contin-
gency and recovery operations might be more critical than during normal opera-
tion. SLA monitoring is hence critical for identifying and characterizing incidents
and deviations from SLA obligations and guarantees, such that effective incident
response actions can be executed.

SLA monitoring is more than blanket monitoring of every possible operation,
property and behavior of resources, although this might be necessary to some ex-
tent. SLA monitoring has to be purposeful and driven by measurable indicators
derived from business objectives. Even if there is extensive monitoring of all re-
sources, a system of filtering and routing information to meaningful endpoints or
sinks is necessary. Failure to meet this requirements results in monitoring informa-
tion consumers being overwhelmed, the processing of irrelevant or redundant data,
and the introduction of unnecessary communications and processing bottlenecks.

12 Service Levels, Security, and Trust? 303

Figure 12.1 shows a conceptual architecture for SLA monitoring for the purpose of
discussing the state of the art as opposed to proposing a blueprint.

Level 2 probes persist
aggregated data Level 2 probes subscribe
to level 1 and receive
aggregated and filtered
information about level 0

High-level
measurable KPIs

Composite Level 1 probes subscribe

|| metrics selectively to level 0 and

m persist data from many
sources

Lowest level O probes
Low-level metrics
extracted

Level 0 probes could
subscribe to each other as
well
Level O probes persist

local information

Fig. 12.1: Conceptual architecture for SLA monitoring.

The typical components in a SLA monitoring solution are collections of probes or
sensors that gather localized resource information and publish it to a set of informa-
tion subscribers. The assignment of subscribers to channels that the probes publish
on is then based on the types of services, location of resources, connectivity and the
respective metrics associated with services. This assures that the collection and dis-
tribution of monitoring data is traceable to specific KPIs and operational contexts.
Higher-level probes subscribe to lower-level probes and hence act as data aggrega-
tors, filters and transformers, based on the information needs of the SLA manage-
ment system at the time of deployment. The needs for monitoring are determined
by analyzing the existing SLAs. Very low-level metrics such as CPU, memory and
network utilization and availability can be mapped directly to localized probes that
gather raw resource performance information. Higher-level metrics that described
collections of resources, functions (e.g., predictions and trends) require higher-level
probes to subscribe to lower level probes. These are referred to as level 1 probes in
Figure 12.1. The information required to configure monitors is extracted from SLA
specifications.

Monitored data can be persisted at each level in order to have different levels of
granularity for historical data. Determining when to capture, aggregate, archive and
delete data will differ from solution to solution. Furthermore, the selection of where
to persist data is dependent on the local storage capabilities of the respective mon-
itored resources, as well as the overall storage architecture and network topology.
Centralized persistence has the advantage of simplicity and faster queries, as data is
stored in one location. The disadvantage is the single point of failure that can cause
all historical data to be damaged or lost. The loss of historical data can be problem-
atic for optimizing the way in which SLAs are enforced and the availability of audit
data when payment is due or disputes arise.

304 Marienfeld et al.

12.2.3 SLA Negotiation and Enforcement

SLA negotiation is the process of a service provider and consumer reaching con-
sensus on the terms to be included in a SLA document. Negotiation is complete
when all parties agree to the terms. This process can be automated but is often done
as manual exchanges of proposals/tenders and offers. A generic protocol for nego-
tiation is known as the alternating offers-based protocol [24], which is shown in
Figure 12.2.

c Provider
onsumer (or Broker)

! REQUEST !

i ~)

| |

| |

! PROPOSAL |

| |

| i

T T

: ACCEPT/ REJECT/ COUNTER :

Z6 | |

j | |
O® |

gE |

O | ACCEPT/REJECT/ COUNTER '

D S M

o [

|

|

|

i

|

~)

|

|

|

|

1
i
|
! CONFIRM-ACCEPT/ CONFIRM-REJECT
|
|
|
|

Fig. 12.2: Alternating offers-based protocol adapted from Venugopal, Chu and
Buyya [24].

The protocol begins with the consumer (or initiator) sending a request to the
provider or broker, who take the role of responder. The provider issues a proposal of
how they can satisfy the request. For example, the request might have stated “pro-
vide service X with a guarantee of less than 3 ms response time for 1000 concurrent
users.” The proposal would use the same functional specification and quality met-
rics although the provider might not be capable of exactly matching the request.
The provider might offer a proposal such as “Can provide service X with a guar-
antee of less than 3 ms response time if there are less than 750 concurrent users.”
The consumer can accept, reject or counter (i.e., update the request) the proposal,
to which the provider can do the same until a confirmed state is reached. The con-
firmed state can be either of acceptance or rejection. This plain protocol assumes
that both parties will adhere to the protocol and that the provider will typically have
counter offers. However, the style of negotiation varies based on the number of par-
ties involved and the set of options available. Three styles of SLA negotiation are as
follows:

12 Service Levels, Security, and Trust? 305

e Boolean: there are no alternatives offered by providers. Consumers either accept

or reject a provider’s offer without requesting alternatives. This style of negoti-
ation is typically brokered, as the consumer considers the offerings of multiple
providers registered with the same broker. Consumers select providers that have
offers that best fit their requirements. The proposal is that of a single provider and
counters are alternative providers. It can be the case that the provider chooses to
maintain a very generic, one-size-fits-all policy for services to avoid any liability.
However such a style of negotiation is not attractive for critical services where
the consumers need to know what to explicitly expect from the provider.
Template: in this case a provider has several options in the form of templates.
Examples of this are the Amazon EC2 services* that offer T-shirt sizes of small,
medium, large and x-large, which all have predefined service guarantees and
technical specifications. This style has issues for over and under-provisioning,
as the capabilities of the provider might change over time. They might need to
dynamically update the specifications of their templates and offerings based on
their current and planned prediction.

Scalar: the most complex style of negotiation is where fine-grained adjustments
are permitted on a dynamic basis. The provider does not counter with a suite
of templates but makes adjustments in their guarantees and obligations, which
then have an impact on how resources are sized and configured. Elastichosts> are
a provider of infrastructure services similar to Amazon, but allow customers to
state the exact amount of capacity (memory, storage and CPU) they require.

Given that the style of negotiation varies from business domain to business do-

main, the Service Level Module must be sufficiently configurable to support any
of these styles. Enforcement of SLAs is the translation of the terms in the agree-
ment to concrete configuration directives. There are three possibilities that exist for
handling the translation of SLAs to directives, each having their advantages and
disadvantages for building a complete solution.

S S S
Extension Transformation Selection
function function function
S+ X(S) S€T
Syntactic Semantic Template
Refinement Refinement Selection

Fig. 12.3: Different approaches to SLA translation to configuration directives

4nttp://aws.amazon.com/ec2

5 http://www.elastichosts.com

http://aws.amazon.com/ec2
http://www.elastichosts.com

306 Marienfeld et al.

The advantages and disadvantages of these different approaches are discussed
below, as it is important for any user of the Service Level Module to know which
approach should be used and the consequences of that selection.

1. Syntactic Refinement: In this case there are homogeneous modeling semantics
for SLA terms and configuration directives. It is only a case of adding more de-
tails (e.g., missing parameter values) to the specification without changing the
semantics or schema of the specification. Syntactic refinement is hence trans-
forming a SLA model S to a configuration S+. For example, S could be WSLA
or WS-Agreement specification with many null fields, where every S+ is more
information provided to those fields.

e Advantages: simpler process for moving through the SLA transformation
process as there are less processing and transformation logic involved. This
also implies higher scalability, easier rollback, consistency checks and sim-
ulation.

e Disadvantages: there is the initial agreement that all management compo-
nents use the same semantics. Secondly, some of the human readability
would have to be sacrificed in order to have a specification that is already
at the level of configuration directives without the ability to separate con-
cerns.

2. Transformation (Semantic Refinement): In this case there is no assumption
of homogeneous specification templates, such that the SLAs can be specified
in any language. In order to obtain configuration directives, the specification
would then have to be transformed into lower level semantics using a trans-
formation function. The transformation function must be provably correct for
deriving a specification with different syntactical properties. There is also need
to add annotations to the initial specification in order to supply sufficient infor-
mation for concrete configuration directives. In Figure 12.3 this is illustrated as
performing a transformation function X (.) on the specification S, such that X (S)
is produced, which could be a totally different format for specifying configura-
tion directives.

e Advantages: lower coupling and dependencies between components that
handle SLA specifications and configuration directives. Existing control and
management components do not have to be changed in order to configure
resources based on SLA specifications. There is also better support for hu-
man and machine readability, as S could be intended for humans and X (S) is
compiled for machines.

e Disadvantages: transformation can be quite complex and hence could in-
troduce errors that take a long time to debug; additional model annotations
would have to be introduced in order to perform this automatically.

3. Template Selection: In this case there are no assumptions of homogeneous
models or templates, but there is a logic implemented for mapping higher
level models to lower level deployable component templates, in such a way

12 Service Levels, Security, and Trust? 307

that selected templates are understood as being conformant with a higher-level
model specification. Figure 12.3 illustrates this by showing the template selec-
tion S <— T, where the template T is selected given the specification S. The set
of templates are discrete and predefined.

e Advantages: even lower coupling and dependencies between models; se-
lection logic is relatively easy to encode and tolerates manual interaction.
Higher flexibility gained in how the SLA is specified. Templates can be made
to be platform independent, such that configuration directives can be further
compiled for different management systems.

e Disadvantages: carries the additional overhead of creating templates and
loses the dynamic property of the above methodologies.

This coverage of the state of the art in SLA management shows that there is still
a gap in the areas of SLA specifications that are flexible for multiple domains and
not restricted to IT-centric services. Secondly, there should not be an assumption of
what level of monitoring is going to be associated with the SLAs specified in the
language. Finally, the language needs to be sufficiently flexible and expressive to
support different forms of translation into configuration directives, without sacrific-
ing human-readability and machine processing that enable advanced analytics and
automation in service management.

12.3 The Service Level Module

12.3.1 Position within USDL

The Service Level Module is an integral part of USDL. The module ties together all
the functional and non-functional guarantees that are stated on top of a core service
description (as described in the Service Module, cf. Chapter 13). Furthermore, all
guarantees are clearly linked to its related (and probably obligated) stakeholder (as
expressed in the Participants Module, cf. Chapter 13). Last there is a strong semantic
linkage to the Legal Module (cf. Chapter 10). While the Legal Module describes the
constraints and aspects of licensing, the Service Level Module complements this
with the specific conditions that are to be guaranteed.

The Service Level Module directly responds to the main requirements for USDL.
It satisfies a clear Conceptualization (see Section 8.3.1.1) as it realizes the core
principles of guarantee, obligated party, affected service elements and negotiable
parameters on an abstract level. It comes with means for Extensibility (see Sec-
tion 8.3.1.4) that allows for incorporating arbitrary, domain specific type/term sys-
tems. It also supports Comprehensibility (see Section 8.3.1.5) as it allows descrip-
tion of service levels in human-readable, semi-structured, and fully structured ways.
Organizational Embedding (see Section 8.3.2.1) is achieved by the association to
participants. And last, it supports Deployment Symmetry (see Section 8.3.2.4) as

308 Marienfeld et al.

it allows mutual, symmetric obligation relationship between arbitrary roles in the
service value creation chain.

12.3.2 Construction Rationale

Service Level Agreements, as considered in the research community, specify all
the conditions under which services are to be delivered. In that sense the whole
specification of USDL can be considered as a language to describe SLAs.

However, within USDL several key perspectives have got high priority and like-
wise shall get high visibility. For this reason the actual Service Level Module is just
one module among others (such as pricing or legal).

The Service Level Module is intentionally kept completely generic, as it does
not specify how concrete service levels on concrete aspects (such as legal, pricing
or security) shall be specified. Instead, its main purpose is twofold. First, it shall
provide a proper glue between other USDL concepts. For example it specifies to
which elements of a function a certain service level shall apply and who is the re-
lated stakeholder. Second, it should allow for incorporation of arbitrary attribute and
expression languages. One particular attribute language is specified further below in
this chapter and deals with security aspects. Other languages could be integrated as
well, e.g., the UML profile for Modeling and Analysis of Real-Time and Embedded
Systems (MARTE) or the full SLA model from SLA@SOIL.

The Service Level Module intentionally does not specify any concrete attribute
type systems. This is done for three reasons. First, there is no commonly agreeable
type system that applies to all kinds of domains. Secondly, even some common core
for such a type system can easily grow to extensive size and therefore contradicts
our ambition to keep the Service Level Module as lean as possible. Third, there
are already established type systems for different domains, and we wanted to keep
the Service Level Module neutral and fully extensible towards these type systems.
However, for pragmatic reasons, the Service Level Module also comes with a base
extension (not part of the core USDL language) which provides common notions
for frequently used metrics such as reliability, security, location, time, performance,
and availability.

12.3.3 Module Overview

The main concepts of the module (see Figure 12.4) are the ServicelLevel (speci-
fying either a state or an action), the ServicelLevelExpression, and the Service-
LevelAttributes. Furthermore, the module contains important references to other
modules’ concepts such as the ObligatedParty (Participant Module), the Variable-
Declaration (Foundation Module), and the relatesTo reference (Foundation Mod-
ule).

12 Service Levels, Security, and Trust’ 309

[ServiceLevelProfile| .

NetworkProvisionedEntit ;i i eati -
B (f) vl serviceLevelProfiles 0.% 1 y 1opecilication: H Artifact [2]
rom service 0.% (from foundation)
serviceLevels
contextVariables
1.% | El Role [#]
Q ServiceLevel obligatedParty L (from participant)
o [B | [E GuaranteedActior] descrinti
.. [] [I lescriptions
E VariableDeclaration[#] [Il |
(from foundation) stateSpecificationY preconditionSpecification
= defaultValue : EString 0.*
1 1 | Description (2]
1 O Exorecaion_ &1l ServiceLevelExpression (from foundation)
|| Expression [#]
(from foundation) descriptions < value : EString lo.x
nane < value : EString trbutes 0. | T type : DescriptionType
T D : EString 1 actionSpecification = scope : EString
= language : EString
0.* !
. i i ServiceLevelElementRef
reference | | VariableReferencd [E] SerwceLeveIAttrrbute} relatesTo 0..% o (from foundation)]
L 1 L |
[Classification JEd] ;
(from) [Constant [H Metric | it
2 classificationSystemID : EStrinc; T value : EString
7 classID : EString
typ 1ce typ e
0..1 .
descriptjons
% H Typ e[7]| 1
(from foundation)
typeReference 0.1 = uni - EString

Fig. 12.4: Overview of the Service Level Module.

The entry point to specify the service levels of a given service is realized via
ServicelLevelProfile. A set of service level specifications are combined into one
profile and are offered, negotiated, or agreed upon as a whole. Different profiles
can be used to specify different options of how service levels may be specified and
grouped (e.g., as gold, silver, bronze profile). A ServiceLevelProfile resembles the
concept of a Service Level Agreement Template as for example specified in WS-
Agreement.

A Servicelevel specifies a single service level objective as it characterizes an
offered, negotiated or agreed service. ServicelLevels are defined by the parties par-
ticipating in service provisioning, delivery, and consumption and express assertions
that are claimed or expected to hold during these activities. Such assertions are al-
ways attributed to a single party, which is obligated to enforce the service level.
From the viewpoint of the party defining the ServicelLevel two cases are distin-
guished. Either the defining party obligates itself to ensure the ServicelLevel, i.e., it
claims that the assertion will hold, or the defining party expects the obligated party
to ensure the ServicelLevel, i.e., it requires the other party to enforce the assertion.
A ServicelLevel can be either a GuaranteedState (specifies a single state that
must be maintained within the lifetime of any service instance, to which the respec-
tive service level profile applies) or a GuaranteedAction (specifies a self-contained
activity that must be performed, if and only if during the lifetime of any service in-

310 Marienfeld et al.

stance to which the respective service level profile applies a specific precondition is
fulfilled).

A ServicelLevelExpression specifies an expression that is evaluated in the con-
text of a service level state or action. For this purpose it may reference a set of
ServicelevelAttributes (constants, metrics or variable references) and define rela-
tionships between these attributes, e.g., Boolean or arithmetic operands. Typically,
it resolves to a Boolean value that indicates whether a GuaranteedState is met or
whether the precondition to a GuaranteedAction is fulfilled.

A ServicelLevelAttribute specifies a single attribute that is part of a service level
expression. Attributes can take various concrete forms, of which three (constant,
variable reference and metric) are defined in the core version of USDL. A Service-
LevelAttribute has a scope, i.e., it exists in reference to something to which it ap-
plies. By default, all attributes are defined in relation to the entire service (including
its overall context). Alternatively, a scope that covers only parts may be specified.
A Constant specifies a single ServicelLevelAttribute which is constant during ser-
vice operation, i.e., during the lifetime of any service instance. A Metric specifies a
single ServicelLevelAttribute which refers to the observation (measure) of a prop-
erty of the service at service runtime. It may change over the lifetime of a service
instance. Last, a VariableReference allows for referencing a variable declared in
the global context of a service or service bundle. VariableReferences are used, for
instance, as part of service level expressions.

In Listing 12.1 (cf. appendix of this chapter) we provide a more detailed example
of how the Service Level Module can be used. It is related to a 3PL logistics provider
as specified in the running example introduced in Chapter 8. The XML snippet
shows a service level specification, where

1. Customers can specify their expected delivery duration

2. A provider-obligated term guarantees the delivery within the specified duration
(ServicelLevel nb 1)

3. A provider-obligated term guarantees that goods are maintained at -5 degrees
Celsius (ServicelLevel nb 2)

4. A provider-obligated action regulates penalty payments for delayed deliveries
(ServicelLevel nb 3)

12.4 USDL and Security

The implementation of security measures for electronic services, such as the proper
authentication of consumers and the encryption of service data, can become a
complex and error-prone effort. Service providers do not always possess sufficient
knowledge and experience on technical security mechanisms and standards. The
same applies to the definition of service security characteristics as part of a formal
service description. Such technical issues may be far out of the core competencies
on which a service provider should be able to concentrate in a globalized and com-
petitive market.

12 Service Levels, Security, and Trust? 311

With regard to the security issues mentioned above, this means that platforms on
which business services are developed, hosted and traded will provide — as part of
the platform infrastructure — shared security services to handle the management of
identities, the access control to services, data protection and related tasks. Business
services strongly vary in their security requirements. General information services,
such as rental car availability information, and transaction oriented services, such as
the booking of a rental car in combination with a debit advice, are possibly traded on
one and the same platform. Hence, security services provided by the platform are not
statically bound to business services. Rather they can be integrated with and bound
to business services on demand and in a flexible manner (Security-as-a-Service).

Ideally, a business service provider is enabled to implement service security mea-
sures in a declarative manner, i.e., by specifying the desired security characteristics
as part of a service model or service description. In this case the underlying plat-
form (operated by a third party) takes care of fulfilling the declared security require-
ments by including the required security services, e.g., by enforcing user authen-
tication or by ensuring non-repudiation of the service usage. In order to anticipate
the potentially limited technical security knowledge of business service providers,
the description of security characteristics should be supported on an abstract, non-
technical level. The abstract description of business service security characteristics
also enables non-technicians on the consumer side to express their security demands
and to find business services that comply with these demands.

The USDL (v3 Milestone 5 specification) elements that serve to model these
claims and requirements are depicted in Figure 12.5. The key building blocks are
the classes SecurityMetric and SecurityAttribute, which are explained in detail
here. They are special cases of the class ServiceLevelAttribute and both entail
properties of the enumeration types SecurityGoal, SecurityRequirementLevel
and RealizationLevel. The former two are straightforward elements that can be
used as detailed below. RealizationLevel refers to the OSI reference model [3] for
layered networks and specifies at what layer in the communication stack the security
element is targeted at. These classes, that were introduced due to security consider-
ations were placed in the module Service Level Base Extension. On the one hand,
non-functional security properties are clearly part of the agreed service level. On the
other hand, they are considered a domain specific extension and not part of USDL
since they are not inherently part of all domains of business services, but only geared
towards domains involving extensive network communication.

The SecurityAttribute and SecurityMetric elements support the description of
service security characteristics in two alternative, mutually exclusive ways, they
mainly differ in the abstraction level. SecurityAttribute specifies security charac-
teristics in terms of security goals and security requirement levels, but it does not
provide reference to specific technical security measures. Such SecurityGoals are
integrity, confidentiality, identification, authentication, authorization, privacy and
accountability. A SecurityRequirementLevel is used to indicate the desired im-
plementation degree of a security goal, i.e., the required level of protection/security
with respect to the security goal. The granularity of the security requirement levels
is inspired by the “authentication assurance levels” [23] as developed by the Euro-

312 Marienfeld et al.

H ServiceLevelAttrib{#] H serviceLevelProfil#]
(from servicelevelmodule; (from servicelevelmodule:
0..%
implementationSpecifications
B Metric JEd] B arifact [2]
(from servicelevelmodule; (from foundation)
0..1 platformSpecificSecurityProfile
H SecurityMetric [B securityAttribute [
(from servicelevel-base-extension) (from servicelevel-base-extension)
15 securityGoals : SecurityGoal 5 securityGoals : SecurityGoal
17= realizationLevels : RealizationLevel T requirementLevel : SecurityRequirementLevel
&= realizationLevels : RealizationLevel

<<enumeration>> [# <<enumeration>> [<<enumeration>>
£ SecurityGoal ‘£ RealizationLevel ‘2 SecurityRequirementLevel

from servicelevel-base-extension) (from servicelevel-base-extension) (from servicelevel-base-extension)
= Other = NotSpecified = None
= Integrity = Transport = Low
= Confidentiality = Message = Medium
= Identification = Application = High
= Authentication = Session
= Authorization
= Privacy
= Accountability

Fig. 12.5: Model elements introduced for security infrastructure.

pean STORK® project. On the other hand, SecurityMetric describes the high level
security goal, but also the specific security mechanism used to address this goal,
possibly including values of parameters and/or pointers to concrete security policies
written in a standard policy language, such as WS-Security, P3P, XACML.

USDL allows one to browse services, and select them according to their capabil-
ities and features, and security features may be important criteria for such a choice.
Thus, USDL elements for security can express claims and/or requirements about
security properties, with information on protections that are enforced by the service
provider. For example, a service provider may claim that the customer data remain
confidential, but at the same time it may require that the consumer should support
message encryption to send input data in a confidential way.

In the next subsections we will describe the two approaches in more detail.

12.4.1 SecurityAttribute

Defining security characteristics in terms of security goals and requirement levels
enables actors (on the provider as well as on the consumer side) who are not “techni-

Shttps://www.eid-stork.eu

https://www.eid-stork.eu

12 Service Levels, Security, and Trust? 313

cal security experts,” i.e., who are not familiar with, e.g., WS-Security policies [11]
or XACML [16] statements, to express their security demands. These requirements
are then interpreted in the context of the particular platform that provides access to
the service, using a platform-specific security profile (additional service metadata).
The platform may undertake the task of implementing the security goals at the de-
sired requirement levels by generating appropriate technical security policies (e.g.,
WS-SecurityPolicy artifacts) and by involving suitable platform services that are
handling authorization, authentication, encryption etc.

The platform operator may create a “platform-specific security profile” to spec-
ify the technical details on how a security goal is realized on a given platform. The
platform-specific security profile maps security goals that are defined at certain se-
curity requirement levels to concrete security mechanisms and technical standards
that are supported by the given platform. For example, a platform operator may map
the security goal “Authentication” at the security requirement level “low” to a for-
mal WS-SecurityPolicy statement which specifies that a “UsernameToken” with a
“password digest” and a “creation time stamp” is required to be authenticated. The
same security goal with the security requirement level “high” could, e.g., be mapped
to a WS-SecurityPolicy statement demanding an “X.509-Token.”

The security mechanisms as well as the mapping of security goals and require-
ment levels to security mechanisms and technical standards are likely to vary from
platform to platform, depending on the application domain and on the technical se-
curity services and standards supported by the platform. For this reason, USDL does
not prescribe the form or structure of a platform-specific security profile. It is simply
referenced.

In summary, the specification of security requirement levels for security goals
enables service providers to express business service security characteristics on a an
abstract rather than on a technical level. The same applies to service consumers that
may search for appropriate business services based on these abstract characteristics.

The following short example further refines the 2PL Airline Manager (cf. Exam-
ple 8 in Section 8.7), and illustrates the utilization of security attributes. The “2PL
Airline Manager” provides two interfaces for looking up rates and kicking-off ship-
ments. It was decided, that the operation “looking up rates” should be public, and
therefore does not require any security characteristics; resulting in the USDL speci-
fication as outlined in Listing 12.2 on page 326: lines 28 to 48. Whereas the kick-off
shipment requires medium Authentication and high Encryption, as it has to be
known, who initiated the shipment, and the data of the operation should be kept
confidential.

The service provider of the 2PL Airline Manager utilizes the “platform-specific
security profile,” defined by the platform operator of the logistics marketplace. At
first the service provider has to select the “platform-specific security profile,” which
is in this case an ontology.” Then, the service provider defines the desired secu-
rity requirements by associating the adequate security goals with the correspondent

7 Accessible via http://ontology.logistics_service.org/security/lso_

profilel23

http://ontology.logistics_service.org/security/lso_profile123
http://ontology.logistics_service.org/security/lso_profile123

314 Marienfeld et al.

security requirement levels (see Figure 12.6). The USDL serialization is also illus-
trated in Listing 12.2: lines 50 to 73.

N ick _off _shipments.usdiz 53

USDL Service Level /Security

w Service Security

The Service Level Security covers major aspects of service security to ensure the inkegrity, authenticity
and confidentiality of the provided service and the communication between the actors,

Security Profile: | http:ffontology . logistics_service.org/securitylso_profile123

[~ Identifiability |

Reguirement Level: | Medium ~

Authentication
Requirement Level: W

Username/Password Authentication (SAML)
Supported Mechanisms:

Registration

Requirement Level: High b

Remate Registration with German ID-Card (P&}
Supparted Mechanisms: Personal Registration with [D-Card

[v hccessProtection

= MessageSecurity

Requirement Level: | High v
Encryption
Requirement Level: High b

Encryption with AlgorithmSuite Basic2565haz56Rsals
Supported Mechanisms:

Signature

Requirement Level: Hone

Mo Signature
Supported Mechanisms:

f » TransportSecurity

» NonRepudation

Service |Functional | Interaction |Pricing | Participants | Imports | Legal | Servicelevel/Security

Fig. 12.6: Specifying security via SecurityAttributes with the USDL Editor (cf.
Section 15.2.1).

12 Service Levels, Security, and Trust? 315

12.4.2 SecurityMetric

Similar to the SecurityAttribute element, the SecurityMetric element specifies
both a SecurityGoal and a RealizationLevel, but does not feature a Security-
RequirementLevel. Note that this is an alternative way to describe security re-
quirements/claims, not intended to be used in combination with SecurityAttribute.
Here, we do not need to express the requirement level, from low to high as in this
approach we define more concrete security properties with link to technical artifacts.
Security is then expressed in terms of concrete actions rather than an abstract level.
Unlike SecurityAttribute, which only defines an abstract requirement level, the se-
curity metric enables a direct mapping with technical artifacts. A service provider
can then specify some claims in terms of mechanism, such as internal procedure
to erase Personally Identifiable Information after a certain amount of time to cover
a privacy SecurityGoal. Also, the specifications to communicate with the service
provider are no longer platform-specific, but rather described and decided when one
operates service elicitation.

Having security described with technical artifacts allows actors that understand
security protocols and standards to express their security demands in such terms. For
example, during the matchmaking phase, a service consumer might restrict search
to services that support data confidentiality at the application level through usage of
a specific encryption algorithm. Prior to publishing the service, the provider defines
which algorithms are accepted, such as AES and RSA for symmetric and asymmet-
ric cryptography, and puts these capabilities in USDL. The consumer is then able to
check which service is compatible with his requirements.

SecurityMetric defines what the service provider claims or requires in terms of
technical artifacts. As this element is mostly for automated services, we can foresee
usage of this element for manual or semi-automated services, such as making sure
in a parcel shipment service that the warehouse clerk sets the seal on the box and
then signs the registry.

Listing 12.3 on page 327 is an instantiation of the model shown in Figure 12.5.
It provides information for an automated service on how identity is managed to
certify authentication and provide message encryption to avoid leakage of data. The
example is based on the example of the 2PL Airline Manager (cf. Section 8.7) where
we try to specify more concrete mechanisms than previous section.

Instead of declaring the security level in an abstract way, we observe that the
snippet gives us details about security mechanisms and goals. It automatically links
security requirements with two external security policies, as outlined in Listing 12.3:
lines 2 to 26. The first one is set to express encryption of a SOAP Body and the
second adds support for SAML token for identity propagation, i.e., authentication.
From line 35 to 38, we specify a protocol that is not an implementation specification.
In our case, we introduce the HTTP Authentication scheme to express future usage
of BASIC or DIGEST authentication. Then, lines 39 to 62 is the first block that
expresses a concrete security mechanism. With the goal to describe authentication
security at the session level, the block lists security mechanisms accepted by the
service provider. Technologies can be linked coming from various sources, such as

316 Marienfeld et al.

the reference to SAML Token coming from a WS-SecurityPolicy or from protocol
documentation such as the HTTP Auth link. USDL provides expression logic to
decide and restrict application of security mechanisms. The second block in lines
63 to 75 indicates the usage of message confidentiality and contains a summary of
what is used. The service consumer is able to quickly understand the profile used by
the service, and in case of further and detailed information he can consult directly
the referenced security policy.

12.5 Trustworthiness of Service Providers

In contrast to security measures, which are targeted at third party threats, trust con-
siderations are concerned with the risk emanating from business partners, in partic-
ular, unknown service providers. Trust calculation in this field evaluates which of
the suitable providers is most likely to actually deliver what was promised [7]. This
definition of trust is in line with Marsh’s dissertation thesis [15], viz., the earliest
transfer of the concept from humanities to computer sciences. He defines trust as
the confidence towards a decision that entails obvious risks.

In an Internet of Services environment, where automatic, manual, and hybrid
services are traded, there are three conceivable sources that can be considered to
estimate the amount of a trust a consumer should put into a particular offering. The
actual calculation of a trust score depends highly on the domain and the consumers
preferences, but in any domain and for any user, the following categories apply.

The first source is provider and service information supplied by the provider
himself. This is precisely the data covered in a USDL service description. It can
safely be called objective, since any piece of information can, at least in theory, be
verified by a neutral third party. This type of source is dealt with in the following
section.

As opposed to the objective data of the service description, trust can be based
on subjective data, i.e., feedback of other users. The connection of USDL with this
reputation-based trust is discussed in the subsequent Section 12.5.2.

The third possibility for service seekers to judge trustworthiness is run time data,
i.e., the information that the service platform collects about providers, offerings and
invocations as they are delivered over time. This material, however, is out of scope
of the static service description which is the purpose of USDL.

12.5.1 Trust Directly Based in Service Description

The USDL service description may offer various cues for confidence in a service of-
fering. In Chapter 13, the class Certification is introduced (see also Figure 12.7). By
asking neutral third parties to issue certificates about agents or a resources a provider

12 Service Levels, Security, and Trust? 317

can establish trustworthiness. Straightforward examples for such are TrustedShops®
and organic food.” Ratings issued by agencies can also be modeled using the Cer-
tification class, such as Skytrax’s World Airline Star Rating!® or the stars of the
European Hotelstars Union.!!

[Resource [7] H Agent [7]

(from foundation) (from foundation)

0..*
certifications

certifications

H Certificatiof2]

(from foundation)

(]

certifica 0.1 . . descriptions
classification
0..1
H Artifact [2] g classificatio®] 0" H Descriptior]
(from foundation) (from foundation) (from foundation)

Fig. 12.7: Class Certification.

Inside the framework of USDL, there is no way to ensure that only rightful cer-
tifications are claimed. Nevertheless, it is reasonable to trust the claim of the certifi-
cation as much as one trusts the neutral party that supposedly issued it: to make sure
that no one falsely shows certificates is of vital business interest to the respective
rating agencies and USDL makes it easy for them to scan for abuses. For example,
TrustedShops can easily check if everyone referencing them actually shows in their
files. Since we are dealing with an electronic market place and formalized service
descriptions, this is much easier than in the case of physical shops that hang up
physical documents.

Apart from these explicit trust cues, there is a range of USDL elements that im-
plicitly induce some amount of trustworthiness. An example for this is the physical
location of a provider. In the logistics domain, a courier company looking for an
ocean carrier may not strictly require that it be based in a certain country, but it may
find EU based carriers more trustworthy than American competitors. Likewise the

8 http://www.trustedshops.de

http://www.bio-siegel.de

0 http://www.airlinequality.com/StarRanking/ranking.htm
W http://www.hotelstars.eu

http://www.trustedshops.de
http://www.bio-siegel.de
http://www.airlinequality.com/StarRanking/ranking.htm
http://www.hotelstars.eu

318 Marienfeld et al.

attribute yearOfFounding in class Organization can contribute to the trust calcu-
lation. Beyond these there are various pieces of information contained in the USDL
description, that can be exploited for trust calculation. However, that calculation
depends highly on the domain and on consumer preferences and is therefore out
of the scope of this book. In the THESEUS/TEXO project, we realized a sample
trust prediction for a car rental scenario [10] based among on USDL data. Simi-
lar to certification, all this information is provider supplied and hence questionable.
So reasonable trust preferences put more weight on such certain elements; namely
those that are likely to be audited by a relevant actor, who has a natural incentive.
The location, for example, is most likely to be checked by the service market place
operator.

On a conceptual level, a clear distinction can be made between two classes of
USDL items: on the one hand, items that imply how well an offering matches the
demand of a service seeker. On the other hand, items that assures confidence in the
provider. An example of the former is the price, the latter could be a certificate. In
practice, however, the line is blurry, certain elements can easily appeal to both the
liking and the trusting of a service seeker. Imagine a traveler looking for a hotel:
A two-star cuisine may not be a requirement, yet its presence can be interpreted
as a sign of overall reliability. In other circumstances one piece of information can
even contribute in a contradictory way to preference and reliability. To illustrate this,
let us consider a 3PL courier company (cf. running example from Chapter 8) that
seeks an airline service. Given their functional parameters such as origin, destina-
tion, dates, weight, etc. there might be ten airlines offering that particular service at
a particular price. Now, while a lower price is quite to the liking of the seeker, a fee
lower than half the mean price may be a cue to distrust that provider.

12.5.2 Using the Service Description to Harness User Ratings

A different approach to evaluate the trustworthiness of a provider is to consider his
reputation, i.e., the reported experience of other users. This field is currently still
under investigation and a recent overview about reputation in service-oriented envi-
ronments is provided in [13]. The essential idea is that of wisdom of crowds [22]:
the more users report on a given provider, the better his reputation predicts his be-
havior. Additionally, and in contrast to the static data mentioned in the previous sec-
tion, a reputation system makes white-washing difficult, i.e., the cost of building up
a trusted profile can stop malicious providers from cheating with fresh accounts [4].

The actual reputation can obviously not be part of a static USDL service descrip-
tion, since it is highly dynamic. Nevertheless, USDL can be used to remedy some
of the problems often encountered in reputation systems.

In many domains a simple measure of how happy a consumer was with a ser-
vice is too undifferentiated. This also applies if the rating system is used for other
purposes than trust calculation. For instance, providers want specific aspects of their
services rated to guide their innovation process. As these two were the main applica-

12 Service Levels, Security, and Trust’ 319

tions for feedback information foreseen by the USDL meta-modelers, the elements
discussed here cater for the needs of both. Consequently, a framework for evaluat-
ing specific aspects of a service or provider is needed. Moreover, domain specific
scales may be necessary, wherever a simple five star scale is insufficient. On the
other hand, there is a mechanism that ensures that comparable services can be rated
in a consistent way. Otherwise, providers would make their offering ratable only in
those categories where they excel.

In order to meet the requirement of Extensibility (cf. Section 8.3.1.4) a complete
feedback meta-model was developed in THESEUS/TEXO [14], that allows for the
definition of a hierarchy of rating aspects on a corresponding scale. Since that meta-
model is not specific to the realm of services, but could also be used for products, it
was not incorporated in USDL. Instead, instances of the feedback meta-model can
be referenced using the USDL class Artifact.

The interlinking of feedback with relevant USDL classes is depicted in Fig-
ure 12.8. Essentially, the relation feedbackModels adds 0 to n feedback model
Artifacts to NetworkProvisionedEntity, AbstractService and Agent. Service-
Bundle and Service inherit the link from NetworkProvisionedEntity and they
represent the core objects to be rated. By means of the super class Agent, USDL
users can describe how Persons and Organizations can be rated. The class
AbstractService deserves a more detailed discussion.

H Artifact [#] N
feedbackModels (from foundation) 0..
0..* feedbackModels
0..*
feedbackNlodels
E NetworkProvisionedEn{#} H AbstractServi{#] H Agent [#]
from servicemodule (from foundation)

(from servicemodule)

0..*
Zﬁ implementedAbstractServices Zﬁ

H serviceBundI[@] H service [#] H person [7] H organizatio[#]

from servicemodule (from servicemodule (from foundation) (from foundation)

Fig. 12.8: Model elements introduced for a feedback infrastructure.

The feedback models attached to AbstractService enable consist rating schemes
across similar services across multiple providers. A domain knowledgeable author-

320 Marienfeld et al.

ity such as the service market place platform operator can define AbstractServices
and specify how instances of these are to be evaluated. Concrete services claim to
implement a given AbstractService in order to be suggested to seekers of this kind
of offering. By that they automatically are subject to the rating scheme attached
to the abstract one, and hence all competing services are guaranteed to sharing the
most important evaluation aspects for this kind of offering. Moreover, providers can
attach further rating models inside their USDL description to get a more detailed
feedback on their performance.

To illustrate this, let us consider an example. We chose a domain where most
principals are unknown to each other, and hence must base their trust on other con-
sumers’ rating. This diverges from the running example where principals are most
likely to have some past interaction and do not have to rely on third party opin-
ions. Consider a service market that trades automotive services. The platform host
would reasonably create an AbstractService “car repair” and link it up with a feed-
back model that covers at least “quality of repair” and “speed of repair.” Thus, all
providers that want to be taken into account when a car repair is wanted, must ref-
erence this AbstractService and can therefore automatically be evaluated in these
two most relevant categories. This in turn leads to a consistent reputation landscape
of car repair services, which is suitable for service seekers to base their trust on.

12.6 Conclusion

In this chapter we presented an overview of existing approaches to model service
levels with an extra glimpse on security specific languages. Building on that, we
described how USDL addresses existing gaps, followed by a discussion of how the
Service Level Module in constructed and how it relates to other USDL elements.
Again, special care was taken to discuss how security properties are covered in
USDL. Namely, USDL allows service providers to specify security offerings and
state their security requirements.

Subsequently, we explained the USDL meta-model elements that are related
to security and trust in detail. Most notably the classes SecurityAttribute and
SecurityMetric for specifying security goals either on a high level or on a tech-
nical level, respectively. The relation feedbackModel was introduced explicitly to
facilitate trust calculation. It associates services with rating schemes. Additionally,
we surveyed preexisting USDL elements that offer cues for trust estimation.

We decided that trust and security elements do not form a USDL module of their
own, since they do not represent a group of functional elements. They rather form
part of the Service Level Module which host most non-functional properties.

Based on the foundations laid out in this chapter, we see several lines of future
work: First, the discussed security properties are on a merely technical level and are
not well suited for describing security properties on a more abstract, i.e., business
level. On a business level, users usually do not want to specify properties such as
Confidentiality or Authorization. Instead, they want to specify more abstract prop-

12 Service Levels, Security, and Trust? 321

erties such as “comply to the following regulations” or “it is only allowed to share
this data between the following parties.” Supporting such high-level specifications
requires, on the one hand, to link the security extension with the Legal Module
(see Chapter 10). This allows for an extensive support of legal compliance regula-
tions such as the Sarbanes-Oxley Act [20] in the financial industry or HIPAA [6]
in the health care industry. Supporting such legal compliance regulations is particu-
lar challenging as they combine legal requirements based on abstract concepts with
technical security and privacy aspects. On the other hand, this requires a process
for mapping high-level requirements to technical realizations of those requirements
and, thus, allow business experts and security experts to work together for providing
secure, trustworthy, and compliant applications on top of the Internet of Services.
Second, we plan to provide extensions that serve domain specific needs, e.g., that
allow for describing advanced access control or privacy needs in the health care do-
main. The reader interested in a detailed description of such requirements is, e.g.,
referred to the documents describing the security requirements England’s National
Programme for Information Technology (NPfIT) of the National Health Service
(NHS) [18, 19]. Third, we plan to empirically evaluate the concepts introduced here,
i.e., to investigate how well they help to describe and trade business services.

References

1. A. Andrieux, K. Czajkowski, A. Dan, et al. = Web services agreement specification
(ws-agreement). Technical report, OpenGridForum, 2007. http://www.ogf.org/
documents/GFD.107.pdf.

2. M. G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for specifying service
level agreements. In Programming Languages and Systems, 16th European Symposium on
Programming, pages 18-32. Springer, 2007.

3. J. Day and H. Zimmermann. The OSI Reference Model. Proceedings of the IEEE,
71(12):1334-1340, Dec. 1983.

4. M. Feldman and J. Chuang. The Evolution of Cooperation under Cheap Pseudonyms.
In 7th IEEE International Conference on E-Commerce Technology (CEC), pages 284-291,
Miinchen, jul 2005. IEEE Computer Society.

5. D. Gregg and S. Walczak. The relationship between website quality, trust and price premiums
at online auctions. Electronic Commerce Research, 10:1-25, 2010.

6. HIPAA. Health Insurance Portability and Accountability Act of 1996. http://www.cms.
hhs.gov/HIPAAGenInfo/, 1996.

7. A.Jgsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service
provision. Decision Support Systems, 43(2):618-644, 2007.

8. K. Kearney, F. Torelli, and C. Kotsokalis. SLA*: An Abstract Syntax for Service Level Agree-
ments. In Proceedings of IEEE Grid2010 conference; Service Level Agreements in Grids
Workshop, Brussels, 2010.

9. D. D. Lamanna, J. Skene, and W. Emmerich. Slang: A language for defining service level
agreements. In Future Trends in Distributed Computing Systems, pages 100-106. IEEE Com-
puter Society, 2003.

10. E. Lapi, E. Hofig, and F. Marienfeld. THESEUS/TEXO Consortium: TRICE Deliverable E4
— Demonstrator Based on TEXO Platform, Feb. 2011.

http://www.ogf.org/documents/GFD.107.pdf
http://www.ogf.org/documents/GFD.107.pdf
http://www.cms.hhs.gov/HIPAAGenInfo/
http://www.cms.hhs.gov/HIPAAGenInfo/

I 7 T

322 Marienfeld et al.

11. K. Lawrence, C. Kaler, and al. Ws-securitypolicy 1.3. http://docs.oasis-open.
org/ws-sx/ws-securitypolicy/vl.3/os/ws-securitypolicy-1.
3-spec—-os.html, 2009.

12. H. Ludwig, A. Keller, A. Dan, et al. Web service level agreement (wsla) language speci-
fication. Technical report, IBM Research, 2003. http://www.research.ibm.com/
wsla/WSLASpecV1-20030128.pdf.

13. Z. Malik and A. Bouguettaya. Trust Management for Service-Oriented Environments.
Springer US, 2009.

14. F. Marienfeld, E. Hofig, and E. Lapi. THESEUS/TEXO Consortium: TRICE Deliverable E2
— Extension of USDL with Trust and Quality Criteria, Feb. 2011.

15. S. P. Marsh. Formalising Trust as a Computational Concept. PhD Thesis, University of
Stirling, 1994.

16. T. Moses. eXtensible Access Control Markup Language(XACML) Version 2.0.
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.
0-core—-spec—os.pdfl, 2005.

17. L. Nixon, D. Lambert, A. Filipowska, and E. Simperl. Future of the Internet of Services for
Industry: the ServiceWeb 3.0 Roadmap. Future Internet Assembly (FIA 2009), 2009.

18. D. of Health. The Care Record Guarantee. Our Guarantee for NHS Care Records in England.
Technical report, Department of Health, 2009.

19. D. of Health. Information Governance (IG) Concepts, 2010. http://www.
connectingforhealth.nhs.uk/systemsandservices/infogov/.

20. P. Sarbanes, G. Oxley, et al. Sarbanes-Oxley Act of 2002. 107th Congress Report, House of
Representatives, 2nd Session, 107-610, 2002.

21. F I. P. SLA@SOI. Empowering the service industry with sla-aware infrastructures. http:
//sla-at-soi.eu.

22. J. Surowiecki. The Wisdom of Crowds. Doubleday, 2004.

23. the STORK-eid Consortium. STORK Deliverable D2.1 - Framework Mapping of Techni-
cal/Organisational Issues to a Quality Scheme. https://www.eid-stork.eu/index.
php?option=com_processes&Itemid=&act=streamDocument&did=579,
2011.

24. S. Venugopal, X. Chu, and R. Buyya. A Negotiation Mechanism for Advance Resource Reser-
vations Using the Alternate Offers Protocol. In 16th International Workshop on Quality of
Service, pages 40—49, june 2008.

Listings

Listing 12.1: USDL Service Level Agreement sample

<identifiableElement xsi:type="service:Service”>

<contextVariables>

<!— variable for expected duration of delivery in weeks,
default: 1 week —>
<variableDeclaration xsi:id="varExpDelDuration”>
<name>

<value> expectedDeliveryDuration </value>
<type> name </type>
</name>
<defaultValue> 1 </defaultValue>
<typeReference>
<classificationSystemID > http ://www. internet —of—services .com/
serviceTypes </classificationSystemID >
<classID> duration_week </classID>
<unitSymbol> wk </unitSymbol>
<descriptions >

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.html
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdfl
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdfl
http://www.connectingforhealth.nhs.uk/systemsandservices/infogov/
http://www.connectingforhealth.nhs.uk/systemsandservices/infogov/
http://sla-at-soi.eu
http://sla-at-soi.eu
https://www.eid-stork.eu/index.php?option=com_processes&Itemid=&act=streamDocument&did=579
https://www.eid-stork.eu/index.php?option=com_processes&Itemid=&act=streamDocument&did=579

12 Service Levels, Security, and Trust? 323

<description>
<value> duration in weeks </value>
<type> freetextShort </type>
<language> en </language>
</description>
</descriptions >
</typeReference>
</variableDeclaration >
</contextVariables>

<serviceLevelProfiles >
<serviceLevelProfile >

<serviceLevels>

<! service level #1 —>

<serviceLevel xsi:type="servicelevel:GuaranteedState”™>
<!— provider is obligated —>
<obligatedParty> prov321 </obligatedParty >

<descriptions >
<description>
<value> Delivery duration must not longer than what has been
specified by the customer. </value>
<type> freetextShort </type>
<language> en </language>
</description>
</descriptions >

<stateSpecification>

<!— measured delivery duration is less than or equal to what is
set in the service context (cust. input —>

<value> metric ["m_delDuration”] <= variable [”v_expDelDur”] </value>

<languageID> urn:example:expression_language </languageID>

<attributes >
<!— reference to the variable —>
<attribute xsi:id="v_expDelDur”
xsi:type="servicelevel : VariableReference”>
<reference> varExpDelDuration </reference>
</attribute >

<!— metric for measuring delivery duration —>
<attribute xsi:id="m_delDuration” xsi:type="servicelevel:Metric”>
<typeReference>

<classificationSystemID >
http ://www. internet —of—services .com/serviceTypes
</classificationSystemID >
<classID> duration_day </classID>
<unitSymbol> d </unitSymbol>
<descriptions >
<description>
<value> duration in days </value>
<type> freetextShort </type>
<language> en </language>
</description>
</descriptions>
</typeReference>
<assessment>
<value> delivery duration as measured by receiving party
</value>
<type> freetextLong </type>
<language> en </language>
</assessment>
</attribute >
</attributes >

324 Marienfeld et al.

85 </stateSpecification>

86 </serviceLevel >

87

88 <l— service level #2 —>

89 <serviceLevel xsi:type="servicelevel:GuaranteedState”>

90 <! provider is obligated —>

91 <obligatedParty > prov321 </obligatedParty >

92

93 <descriptions>

94 <description>

95 <value> The temperature of the goods is maintained at minus 5
96 degrees. </value>

97 <type> freetextShort </type>

98 <language> en </language>

99 </description>

100 </descriptions >

101

102 <stateSpecification>

103

104 <!— measured temperature is approximately equal to minus 5
105 degrees Celsius —>

106 <value> metric ["m_temp”] "= constant[”c5”] </value>

107 <languageID> urn:example:expression_-language </languagelD>
108

109 <attributes >

110 <! temperature threshold (modeled as constant) —>

111 <attribute xsi:id="c5” xsi:type="servicelevel:Constant”>
112 <value> —5 </value>

13 <typeReference>

114 <classificationSystemID >

115 http ://www. internet —of—services .com/serviceTypes
116 </classificationSystemID >

17 <classID> temperature_celsius </classID>

118 <unitSymbol> dC </unitSymbol>

119 <descriptions >

120 <description>

121 <value> temperature in degrees Celsius </value>
122 <type> freetextShort </type>

123 <language> en </language>

124 </description>

125 </descriptions>

126 </typeReference>

127 </attribute >

128 <!— metric for measuring temperature, related to goods (input to
129 service function “Transport”) ==

130 <attribute xsi:id="m-temp” xsi:type="servicelevel:Metric”>
131 <relatesTo> paramGoods </relatesTo>

132 <typeReference>

133 <classificationSystemID >

134 http ://www. internet —of—services .com/serviceTypes
135 </classificationSystemID >

136 <classID> temperature_celsius </classID>

137 <unitSymbol> dC </unitSymbol>

138 <descriptions >

139 <description>

140 <value> temperature in degrees Celsius </value>
141 <type> freetextShort </type>

142 <language> en </language>

143 </description>

144 </descriptions>

145 </typeReference>

146 <assessment>

147 <value> temperature of goods as constantly measured
148 by provider </value>

149 <type> freetextLong </type>

150 <language> en </language>

151 </assessment>

152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

12 Service Levels, Security, and Trust? 325

<l/attribute >
</attributes >

</stateSpecification>
</serviceLevel>

<!— service level #3 >

<serviceLevel xsi:type="servicelevel:GuaranteedAction”>
<!l— provider is obligated —>
<obligatedParty> prov321 </obligatedParty >

<descriptions >
<description>
<value> Penalty payment of EURIO0 per full day of delayed
delivery
</value>
<type> freetextShort </type>
<language> en </language>
</description>
</descriptions >

<preconditionSpecification>
<!— measured delivery delay is greater or equal than 1 —>
<value> metric [”m_delDelay”] >= constant[”c6”] </value>
<languageID> urn:example:expression_language </languagelD>

<attributes >
<!— delivery delay threshold (modeled as constant) —>
<attribute xsi:id="c6” xsi:type="servicelevel:Constant”>
<value> 1 </value>
<typeReference> <!-— same type description as specified in
metric below —> </typeReference>
</attribute >

<!— metric for measuring delay in delivery —>
<attribute xsi:id="m-_delDelay” xsi:type="servicelevel:Metric”>
<typeReference>

<classificationSystemID >
http ://www. internet —of—services .com/serviceTypes
</classificationSystemID >
<classID> duration_day </classID>
<unitSymbol> d </unitSymbol>
<descriptions >
<description>
<value> duration in days </value>
<type> freetextShort </type>
<language> en </language>
</description>
</descriptions >
</typeReference>
<assessment>
<value>delayed delivery as measured by receiving party </value
>
<type> freetextLong </type>
<language> en </language>
</assessment>
</attribute >
</attributes >
<preconditionSpecification>

<actionSpecification>
<value> <!—— credit the customer with (EUR 100
* floor(metric[”m_delDelay”])) —> </value>
<languageID> urn:example:action_language </languagelD>
</actionSpecification>

</serviceLevel>
</serviceLevels>

217
218
219
220
221
222

© 9 U AW —

326 Marienfeld et al.

</serviceLevelProfile >
</serviceLevelProfiles >

</identifiableElement >

Listing 12.2: USDL SecurityAttribute

<= ... —>
<serviceLevelProfile >
<implementationSpecifications >
<implementationSpecification xsi:id="lso_profile123”>
<type> TechnicalMetadata </type>
<mimeType> application/xml </mimeType>
<uri> http :// ontology.logistics_service .org/security/lso_profilel23 </uri
>
<descriptions >
<description>
<value> security profile 123 </value>
<type> name </type>
<language> en </language>
</description>
</descriptions>
</implementationSpecification>
</implementationSpecifications >
<I— ... —>
<serviceLevels>
<serviceLevel xsi:type="servicelevel:GuaranteedState”>

<Jl— ... —>
<stateSpecification>
< ... —

<value> attribute [”secl”] applies </value>
<value> attribute ["sec2”] applies </value>

L= ... =>
<attributes >
<!— look_up-rates has no security restrictions —>

<attribute xsi:id="secl” xsi:type="slbaseext: SecurityAttribute”>
<relatesTo>airline_mgmt:look_up_rates </relatesTo>
<securityGoals>
<securityGoal >Authentication </securityGoal >
</securityGoals>
<requirementLevel >none </requirementLevel >
<platformSpecificSecurityProfile >
Iso_profilel23
</platformSpecificSecurityProfile >
</attribute >
<attribute xsi:id="sec2” xsi:type="slbaseext:SecurityAttribute”>
<relatesTo>airline_mgmt:look_up_rates </relatesTo>
<securityGoals>
<securityGoal> Confidentiality </securityGoal>
</securityGoals>
<requirementLevel >none</requirementLevel >
<platformSpecificSecurityProfile >
Iso_profilel23
</platformSpecificSecurityProfile >
</attribute >

e .., =>

<!— kick_off_shipments requires medium Authentication
and high Confidentiality
—>

<attribute xsi:id="sec3” xsi:type="slbaseext: SecurityAttribute”>
<relatesTo>airline_mgmt : kick_off_shipments </relatesTo>
<securityGoals>
<securityGoal> Authentication </securityGoal>
</securityGoals>

T S

12 Service Levels, Security, and Trust? 327

<requirementLevel >medium</requirementLevel >
<platformSpecificSecurityProfile >
Iso_profilel23
</platformSpecificSecurityProfile >
</attribute >
<attribute xsi:id="sec4” xsi:type="slbaseext:SecurityAttribute”>
<relatesTo>airline_mgmt: kick_off_shipments </relatesTo>
<securityGoals>
<securityGoal>Confidentiality </securityGoal>
</securityGoals >
<requirementLevel >high </requirementLevel >
<platformSpecificSecurityProfile >
Iso_profilel23
</platformSpecificSecurityProfile >
</attribute >
</attributes >
- ... —
</stateSpecification>
</serviceLevel>
<serviceLevels>
<serviceLevelProfile >
= ... =>

Listing 12.3: USDL Security Metric

<serviceLevelProfile >
<implementationSpecifications >
<implementationSpecification xsi:id="1so_Wsspl.2 _EncryptBody”>
<type> TechnicalMetadata </type>
<mimeType> application/xml </mimeType>
<uri> http ://logistics_service .org/security/lso—Wsspl.2—EncryptBody .xml
</uri>
<descriptions >
<description>
<value> WS-SecurityPolicy to express that the entire body of a soap
message has to be encrypted </value>
<language> en </language>
</description>
</descriptions >
</implementationSpecification>
<implementationSpecification xsi:id="1so-Wsspl.2_SupportSAMLToken”>
<type> TechnicalMetadata </type>
<mimeType> application/xml </mimeType>
<uri> http ://logistics_service .org/security/lso—Wsspl.2—SupportSAMLToken .
xml </uri>
<descriptions >
<description>
<value> WS-SecurityPolicy to express the support of SAML token for
Identity </value>
<language> en </language>
</description>
</descriptions >
</implementationSpecification>
</implementationSpecifications >

<l —>
<serviceLevels xsi:type="servicelevel:GuaranteedState” obligatedParty ="//
@Roles.0” >
<stateSpecification>
e .. =>
<attributes >
<!— kick_off_shipments requires medium and
high Confidentiality
—>
<attribute xsi:id="sec:httpauth” xsi:type="servicelevel:GenericConstant
>

<!-— HTTP AUTH (BASIC or DIGEST) —>
<value>http ://www.ietf . org/rfc/rfc2617.txt </value>

328 Marienfeld et al.

</attribute >
<attribute xsi:id="sec5” xsi:type="slbaseext:SecurityMetric”>
<relatesTo>airline.mgmt: kick_off_shipments </relatesTo>
<securityGoals>
<securityGoal> Authentication </securityGoal>
</securityGoals>
<RealizationLevel> Session </RealizationLevel>
<securityMechanisms>
<securityMechanism xsi:type="sec:httpauth”>
<value>HTTP AUTH</value>
</securityMechanism>
<securityMechanism xsi:type="Iso_Wsspl.2 _SupportSAMLToken”>
<value>SAML</value>
</securityMechanism>
</securityMechanisms>
<expressionSpecification>
<description>
Authentication is verified through HTTP headers
or token in SOAP messages
</description>
<expression>
sec: httpauth OR lso-Wsspl.2 _SupportSAMLToken
</expression>
</expressionSpecification>
</attribute >
<attribute xsi:id="sec6” xsi:type="slbaseext:SecurityMetric”>
<relatesTo>airline.mgmt : kick_off_shipments </relatesTo>
<securityGoals>
<securityGoal>Confidentiality </securityGoal>
</securityGoals>
<RealizationLevel > Message </RealizationLevel>
<securityMechanisms>
<securityMechanism xsi:type="lso-Wsspl.2 _EncryptBody”>
<type>Encryption </type>
<value>Basic256Sha256Rsal5 </value>
</securityMechanism>
</securityMechanisms>
</attribute >
</attributes >
<! . >
</stateSpecification>
<= ... —>
</serviceLevels>
</serviceLevelProfile >

