SpringerBriefs in Computer Science

Series Editors Stan Zdonik Peng Ning Shashi Shekhar Jonathan Katz

Xindong Wu

Lakhmi C. Jain

David Padua Xuemin Shen

Borko Furht

VS Subrahmanian

Power Distribution and Performance Analysis for Wireless Communication Networks

Dongmei Zhao McMaster University Hamilton, Ontario, Canada dzhao@mcmaster.ca

ISSN 2191-5768 e-ISSN 2191-5776 ISBN 978-1-4614-3283-8 e-ISBN 978-1-4614-3284-5 DOI 10.1007/978-1-4614-3284-5 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2012932310

© The Author 2012

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1	Intr	oduction	1
	1.1	Radio Resource Management	1
	1.2	Power Control and Interference Management	8
	Refe	erences	15
2	CDI	MA-Based Wireless Cellular Networks	17
	2.1	Motivations for Power Control	17
	2.2	Power Allocations in a Single Cell Network	19
	2.3	Effect of Imperfect Power Control	24
	2.4	Adaptive Power and Adaptive Rate	25
	2.5	Power Allocations in a Multi-cell Network	29
	2.6	Soft Handoff and Power Allocations	32
	Refe	erences	36
3	Wir	eless Networks with Two-hop Relaying	39
	3.1	Multihop Relaying	39
	3.2	Performance for Amplify-and-Forward	41
	3.3	Performance for Decode-and-Forward	49
	Refe	erences	56
4	Adv	anced Wireless Communication Networks	57
	4.1	Out-of-band Relaying in Wireless Cellular Networks	57
	4.2	Cooperative Relaying in Wireless Cellular Networks	
	4.3	Cognitive Radio Networks with Spectrum Underlay	82
	Refe	erences	93
A	Irre	ducible Matrix and Dominant Eigenvalue	95
	Refe	erences	95
В	Posy	ynomial and Related Optimization Problems	97
	Refe	erences	99

Acronyms

AF Amplify-and-forward
ARQ Automatic Repeat-reQuest
AWGM Additive white Gaussian noise

BER Bit error rate
BS Base station

CDMA Code division multiple access

CR Cognitive radio

CRN Cognitive radio network
DF Decode-and-forward
ERA Equal rate allocation
ELG Effective link gain
GP Geometric programming

Of Ocometric programming

GSM Global system for mobile communications

HHO Hard handoff

KKT Karush-Kuhn-Tucker MRC Maximum ratio combining

MS Mobile station

OFDMA Orthogonal frequency division multiple access

p2s Primary-to-secondary

PRA Proportional fair rate allocation

QoS Quality of service

RRM Radio resource management

RS Relay station

s2p Secondary-to-primary

S-AF Selection amplify-and-forward

S-D Source-to-destination

SHO Soft handoff

SINR Signal-to-interference-plus-noise ratio

TDMA Time division multiple access

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless local area network