Skip to main content

Distance Geometry for Realistic Molecular Conformations

  • Chapter
  • First Online:
Distance Geometry

Abstract

In order to better understand the many different distance geometry numerical algorithms, it is necessary to relate them to real-world problems in computational chemistry. Here we consider small molecule applications, determination of protein conformation from nuclear magnetic resonance experiments (NMR), protein homology modeling, and more abstract applications to conformational classification and protein sequence comparison. Underlying methods involve conformations in more than three dimensions, low resolution treatments of large problems, and special abstract algebras for dealing with geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrafiotis, D.K.: Stochastic proximity embedding. J. Comput. Chem. 24(10), 1215–1221 (2003)

    Article  Google Scholar 

  2. Akutsu, T.: Protein structure alignment using dynamic programming and iterative improvement. IEICE Trans. Inform. Syst. E79-D, 1–8 (1996)

    Google Scholar 

  3. Alfakih, A.Y., Khandani, A., Wolkowicz, H.: Solving Euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl. 12, 13–30 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M.: Principal eigenvector of contact matrices and hydrophobicity profiles in proteins. Proteins 58, 22–30 (2005)

    Article  Google Scholar 

  5. Berndt, K.D., Guentert, P., Wuethrich, K.: Conformational sampling by NMR solution structures calculated with the program DIANA evaluated by comparison with long-time molecular dynamics calculations in explicit water. Proteins 24, 304–313 (1996)

    Article  Google Scholar 

  6. Beutler, T.C., van Gunsteren, W.F.: Molecular dynamics free energy calculation in four dimensions. J. Chem. Phys. 101, 1417–1422 (1994)

    Article  Google Scholar 

  7. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Chelsea Publishing Company, New York (1970)

    MATH  Google Scholar 

  8. Bonvin, A.M.J.J., Brünger, A.T.: Conformational variability of solution NMR structures. J. Mol. Biol. 250, 80–93 (1995)

    Article  Google Scholar 

  9. Bonvin, A.M.J.J., Rullmann, J.A.C., Lamerichs, R.M.J.N., Boelens, R., Kaptein, R.: “Ensemble” iterative relaxation matrix approach: A new NMR refinement protocol applied to the solution structure of crambin. Proteins Struct. Funct. Genet. 15, 385–400 (1993)

    Article  Google Scholar 

  10. Braun, W.: Distance geometry in distance and torsion angle space: Flexibility, convergence and sampling properties. In: Renugoplakrishnan, V. (ed.) Proteins, pp. 116–22. ESCOM, Leiden, Netherlands (1991)

    Chapter  Google Scholar 

  11. Carvalho, R., Lavor, C., Protti, F.: Extending the geometric build-up algorithm for the molecular distance geometry problem. Inform. Process. Lett. 108(4), 234–237 (2008)

    Article  MathSciNet  Google Scholar 

  12. Clore, G.M., Gronenborn, A.M., Bax, A.: A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Mag. Reson. 133, 216–221 (1998)

    Article  Google Scholar 

  13. Clore, G.M., Gronenborn, A.M., Tjandra, N.: Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J. Mag. Reson. 131, 159–162 (1998)

    Article  Google Scholar 

  14. Crippen, G.M., Smellie, A.S., Richardson, W.W.: Conformational sampling by a general linearized embedding algorithm. J. Comput. Chem. 13(10), 1262–1274 (1992)

    Article  Google Scholar 

  15. Crippen, G.M.: Chemical distance geometry: Current realization and future projection. J. Math. Chem. 6, 307–324 (1991)

    Article  Google Scholar 

  16. Crippen, G.M.: Cluster distance geometry of polypeptide chains. J. Comput. Chem. 25, 1305–1312 (2004)

    Article  Google Scholar 

  17. Crippen, G.M.: Exploring the conformation space of cycloalkanes by linearized embedding. J. Comput. Chem. 13(3), 351–361 (1992)

    Article  MathSciNet  Google Scholar 

  18. Crippen, G.M.: Recognizing protein folds by cluster distance geometry. Proteins 60, 82–89 (2005)

    Article  Google Scholar 

  19. Crippen, G.M.: Statistical mechanics of protein folding by cluster distance geometry. Biopolymers 75(3), 278–289 (2004)

    Article  Google Scholar 

  20. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)

    MATH  Google Scholar 

  21. Crippen, G.M., Havel, T.F.: Global energy minimization by rotational energy embedding. J. Chem. Inform. Comput. Sci. 30(3), 222–7 (1990)

    Article  Google Scholar 

  22. Cuniasse, P., Raynal, I., Yiotakis, A., Dive, V.: Accounting for conformational variability in NMR structure of cyclopeptides: Ensemble averaging of interproton distance and coupling constant restraints. J. Am. Chem. Soc. 119, 5239–5248 (1997)

    Article  Google Scholar 

  23. Dalbec, J.P.: Straightening Euclidean invariants. Ann. Math. Artif. Intell. 13, 97–108 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dasgupta, S., Gupta, A.: An elementary proof of the Johnson-Lindenstrauss lemma, Technical Report TR-99-006, International Computer Science Institute (ICSI), Berkeley, California (1999)

    Google Scholar 

  25. De Vico, L., Olivucci, M., Lindh, R.: New general tools for constrained geometry optimizations. J. Chem. Theor. Comput. 1, 1029–1037 (2005)

    Article  Google Scholar 

  26. Dong, Q., Wu, Z.: A Linear-time algorithm for solving the molecular distance geometry problem with exact interatomic distances. J. Global Optim. 22, 365–375 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 26(3), 321–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dress, A.W.M., Havel, T.F.: Distance geometry and geometric algebra. Found. Phys. 23, 1357–1374 (1993)

    Article  MathSciNet  Google Scholar 

  29. Easthope, P.L.: Classifying the conformations of a chemical system using matrices of integers. J. Math. Chem. 13, 73–94 (1993)

    Article  MathSciNet  Google Scholar 

  30. Emiris, I.Z., Nikitopoulos, T.G.: Molecular conformation search by distance matrix perturbations. J. Math. Chem. 37(3), 233–253 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Feuston, B.P., Miller, M.D., Culberson, J.C., Nachbar, R.B., Kearsley, S.K.: Comparison of knowledge-based and distance geometry approaches for generation of molecular conformations. J. Chem. Inform. Comput. Sci. 41(3), 754–763 (2001)

    Article  Google Scholar 

  32. Forster, M.J., Heath, A.B., Afzal, M.A.: Application of distance geometry to 3D visualization of sequence relationships. Bioinformatics 15(1), 89–90 (1999)

    Article  Google Scholar 

  33. Gippert, G.P., Yip, P.F., Wright, P.E., Case, D.A.: Computational Methods for Determining Protein Structures from NMR Data. Biochem. Pharmacol. 40, 15–22 (1990)

    Article  Google Scholar 

  34. Glunt, W., Hayden, T.: Improved convergence and speed for the distance geometry program APA to determine protein structure. Comput. Chem. 25, 223–230 (2001)

    Article  Google Scholar 

  35. Glunt, W., Hayden, T.L., Hong, S., Wells, J.: An Alternating Projection Algorithm for Computing the Nearest Euclidean Distance Matrix. SIAM J. Matrix Anal. Appl. 11, 589–600 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Glunt, W., Hayden, T.L., Liu, W.M.: The Embedding Problem for Predistance Matrices. Bull. Math. Biol. 53, 769–796 (1991)

    MATH  Google Scholar 

  37. Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformations from distance matrixes. J. Comput. Chem. 14(1), 114–120 (1993)

    Article  Google Scholar 

  38. Glunt, W., Hayden, T.L., Raydan, M.: Preconditioners for distance matrix algorithms. J. Comput. Chem. 15, 227–232 (1994)

    Article  Google Scholar 

  39. Grooms, I.G., Lewis, R.M., Trosset, M.W.: Molecular embedding via a second order dissimilarity parameterized approach. SIAM J. Sci. Comput. 31, 2733–2756 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Grosso, A., Locatelli, M., Schoen, F.: Solving molecular distance geometry problems by global optimization algorithms. Comput. Optim. Appl. 43(1), 23–37 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Guentert, P., Mumenthaler, C., Wuethrich, K.: Torsion angle dynamics for NMR structure calculations with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997)

    Article  Google Scholar 

  42. Hadwiger, M.A., Fox, G.E.: Explicit distance geometry: Identification of all the degrees of freedom in a large RNA molecule. J. Biomol. Struct.Dynam. 8(4), 759–779 (1991)

    Article  Google Scholar 

  43. Hansmann, U.H.E., Okamoto, Y.: New Monte Carlo algorithms for protein folding. Curr. Opin. Struct. Biol. 9, 177–183 (1999)

    Article  Google Scholar 

  44. Havel, T.F.: An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Progress Biophys. Mol. Biol. 56, 43–78 (1991)

    Article  Google Scholar 

  45. Havel, T.F.: Distance geometry: Theory, algorithms, and chemical applications, In: von Rague, P., Schreiner, P.R., Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer, H.F. (eds.) Encyclopedia of Computational Chemistry, pp. 723–742. Wiley, New York (1998)

    Google Scholar 

  46. Havel, T.F.: Distance Geometry. In: Grant, D.M., Harris, R.K. (eds.) Invited contribution to the Encyclopedia of NMR, pp. 1701–1710. Wiley, New York (1996)

    Google Scholar 

  47. Havel, T.F.: Metric matrix embedding in protein structure calculations, NMR spectra analysis, and relaxation theory. Mag. Reson. Chem. 41, 537–550 (2003)

    Article  Google Scholar 

  48. Havel, T.F.: The sampling properties of some distance geometry algorithms applied to unconstrained polypeptide chains: a study of 1830 independently computed conformations. Biopolymers 29(12–13), 1565–1585 (1990)

    Article  Google Scholar 

  49. Havel, T.F., Hyberts, S., Najfeld, I.: Recent advances in molecular distance geometry. Lect. Notes Comput. Sci. 1278, 62–71 (1997)

    Article  Google Scholar 

  50. Hendrickson, B.A.: The molecule problem: Determining conformation from pairwise distances, Technical Report 90-1159, Department of Computer Science, Cornell University, Ithaca, New York (1990)

    Google Scholar 

  51. Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  Google Scholar 

  52. Huang, E.S., Samudrala, R., Ponder, J.W.: Distance geometry generates native-like folds for small helical proteins using the consensus distances of predicted protein structures. Protein Sci. 7, 1998–2003 (1998)

    Article  Google Scholar 

  53. Huber, T., Torda, A.E., van Gunsteren, W.F.: Structure optimization combining soft-core interaction functions, the diffusion equation method, and molecular dynamics. J. Phys. Chem. A101, 5926–5930 (1997)

    Article  Google Scholar 

  54. Ikura, T., Go, N.: Determination of three-dimensional structures of proteins in solution by NMR experiment and distance geometry calculation. Kobunshi 39(3), 210–213 (1990)

    Article  Google Scholar 

  55. Jacobs, D.J., Rader, A.J., Kuhn, L.A., Thorpe, M.F.: Protein flexibility predictions using graph theory. Protein. Struct. Funct. Genet. 44, 150–165 (2001)

    Article  Google Scholar 

  56. Jacobs, D.J., Livesay, D.R., Hules, J., Tasayco, M.L.: Elucidating quantitative stability/flexibility relationships within thioredoxin and its fragments using a distance constraint model. J. Mol. Biol. 358, 882–904 (2006)

    Article  Google Scholar 

  57. Kemmink, J., Scheek, R.M.: Dynamic modelling of a helical peptide in solution using NMR data: Multiple conformations and multi-spin effects. J. Biomol. NMR 5, 33–40 (1995)

    Article  Google Scholar 

  58. Koehl, P., Lefevre, J.F., Jardetzky, O.: Computing the geometry of a molecule in dihedral angle space using NMR derived constraints. A new algorithm based on optimal filtering. J. Mol. Biol. 223(1), 299–315 (1992)

    Google Scholar 

  59. Koharudin, L.M.I., Bonvin, A.M.J.J., Kaptein, R., Boelens, R.: Use of very long-distance NOEs in a fully deuterated protein: An approach for rapid protein fold determination. J. Mag. Reson. 163, 228–225 (2003)

    Article  Google Scholar 

  60. Kuszewski, J., Nilges, M., Brunger, A.T.: Sampling and efficiency of metric matrix distance geometry: A novel partial metrization algorithm. J. Biomol. NMR 2, 33–56 (1992)

    Article  Google Scholar 

  61. Laboulais, C., Ouali, M., Bret, M.L., Gabarro-Arpa, J.: Hamming distance geometry of a protein conformational space: Application to the clustering of a 4-ns molecular dynamics trajectory of the HIV-1 integrase catalytic core. Protein. Struct. Funct. Genet. 47, 169–179 (2002)

    Article  Google Scholar 

  62. Leach, A.R., Smellie, A.S.: A combined model-building and distance geometry approach to automated conformational analysis and search. J. Chem. Inform. Comput. Sci. 32, 379–385 (1992)

    Article  Google Scholar 

  63. Liberti, L., Lavor, C., Maculan, N., Marinelli, F.: Double variable neighbourhood search with smoothing for the molecular distance geometry problem. J. Global Optim. 43, 207–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: From continuous to discrete. Int. Trans. Oper. Res. 18(1), 33–51 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. Mertz, J.E., Guentert, P., Wuethrich, K., Braun, W.: Complete relaxation matrix refinement of NMR structures of proteins using analytically calculated dihedral angle derivatives of NOE intensities. J. Biomol. NMR 1(3), 257–269 (1991)

    Article  Google Scholar 

  66. Morikawa, S., Ogata, K., Sekikawa, A., Sarai, A., Ishii, S., Nishimura, Y., Nakamura, H.: Determination of the NMR solution structure of a specific DNA complex of the Myb DNA-binding domain. J. Biomol. NMR 6, 294–305 (1995)

    Article  Google Scholar 

  67. Moré, J.J., Wu, Z.: \(\epsilon \)–optimal solutions to distance geometry problems via global continuation. In: Pardalos, P.M., Shalloway, D., Xue, G. (eds.) Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, pp. 151–168. American Mathematical Society, Providence (1996)

    Google Scholar 

  68. Moré, J.J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim. 7, 814–836 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  69. Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Global Optim. 15, 219–234 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  70. Najfeld, I., Havel, T.F.: Embedding with a rigid substructure. J. Math. Chem. 21, 223–260 (1997)

    Article  MathSciNet  Google Scholar 

  71. Nakai, T., Kidera, A., Nakamura, H.: Intrinsic nature of the three-dimensional structure of proteins as determined by distance geometry with good sampling properties. J. Biomol. NMR 3, 19–40 (1993)

    Article  Google Scholar 

  72. Nilges, M., Kuszewski, J., Brunger, A.T.: Sampling properties of simulated annealing and distance geometry. NATO ASI Series, Series A, 225, 451–455 (1991)

    Google Scholar 

  73. Oshiro, C.M., Kuntz, I.D.: Application of distance geometry to the proton assignment problem. Biopolymers 33(1), 107–115 (1993)

    Article  Google Scholar 

  74. Oshiro, C.M., Thomason, J., Kuntz, I.D.: Effects of limited input distance constraints upon the distance geometry algorithm. Biopolymers 31(9), 1049–1064 (1991)

    Article  Google Scholar 

  75. Pastore, A., Atkinson, R.A., Saudek, V., Williams, R.J.P.: Topological mirror images in protein structure computation: An underestimated problem. Protein. Struct. Funct. Genet. 10(1), 22–32 (1991)

    Article  Google Scholar 

  76. Pearlman, D.A.: How is an NMR structure best defined? An analysis of molecular dynamics distance-based approaches. J. Biomol. NMR 4, 1–16 (1994)

    Google Scholar 

  77. Peishoff, C.E., Dixon, J.S.: Improvements to the distance geometry algorithm for conformational sampling of cyclic structures. J. Comput. Chem. 13(5), 565–569 (1992)

    Article  Google Scholar 

  78. Peng, C., Ayala, P.Y., Schlegel, H.B., Frisch, M.J.: Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem. 17, 49–56 (1996)

    Article  Google Scholar 

  79. Perlman, R.S.: 3D molecular structures: Generation and use in 3D searching. In: Kubinyi, H. (ed.) 3D-QSAR in Drug Design: Theory, Methods and Applications. ESCOM Science Publishers, Leiden, The Netherlands (1993)

    Google Scholar 

  80. Petersen, K., Taylor, W.R.: Modelling zinc-binding proteins with GADGET: Genetic algorithm and distance geometry for exploring topology. J. Mol. Biol. 325(5), 1039–1059 (2003)

    Article  Google Scholar 

  81. Pfeifer, R.E., van Hook, C.: Circles, vectors, and linear algebra. Math. Mag. 66, 86 (1993)

    Google Scholar 

  82. Porta, J.M., Ros, L., Tomas, F., Corcho, F., Canto, J., Perez, J.J.: Complete maps of molecular-loop conformation spaces. J. Comput. Chem. 29, 144–155 (2008)

    Article  Google Scholar 

  83. Prestegard, J.H., Al-Hashimi, H.M., Tolman, J.R.: NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q. Rev. Biophys. 33, 371–424 (2000)

    Article  Google Scholar 

  84. Rowels, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  85. Sherman, S.A., Johnson, M.E.: Derivation of locally accurate spatial protein structure from NMR data. Progress Biophys. Mol. Biol. 59, 285–339 (1993)

    Article  Google Scholar 

  86. Singer, A.: A remark on global positioning from local distances. Proc. Nat. Acad. Sci. 105, 9507–9511 (2008)

    Article  MATH  Google Scholar 

  87. Sit, A., Wu, Z., Yuan, Y.: A geometric buildup algorithm for the solution of the distance geometry problem using least-squares approximation. Bull. Math. Biol. 71(8), 1914–1933 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  88. Snow, M.E., Crippen, G.M.: Dimensional oscillation. A fast variation of energy embedding gives good results with the AMBER potential energy function. Int. J. Peptide Protein Res. 38(2), 161–168 (1991)

    Google Scholar 

  89. Spellmeyer, D.C., Wong, A.K., Bower, M.J., Blaney, J.M.: Conformational analysis using distance geometry methods. J. Mol. Graph. Model. 15, 18–36 (1997)

    Article  Google Scholar 

  90. Srinivasan, S., March, C.J., Sudarasanam, S.: An automated method for modeling proteins on known templates using distance geometry. Protein Sci. 2, 227–289 (1993)

    Google Scholar 

  91. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2322 (2000)

    Article  Google Scholar 

  92. Torda, A.E., Scheek, R.M., van Gunsteren, W.F.: Time-averaged nuclear overhauser effect distance restraints applied to tendamistat. J. Mol. Biol. 214, 223–235 (1990)

    Article  Google Scholar 

  93. van Kampen, A.H.C., Buydens, L.M.C., Lucasias, C.B., Blommers, M.J.J.: Optimisation of metric matrix embedding by genetic algorithms. J. Biomol. NMR 7, 214–224 (1996)

    Article  Google Scholar 

  94. van Schaik, R.C., Berendsen, H.J.C., Torda, A.E., van Gunsteren, W.F.: A structure refinement method based on molecular dynamics in four spatial dimensions. J. Mol. Biol. 234, 751–762 (1993)

    Article  Google Scholar 

  95. Vendruscolo, M., Kussell, E., Domany, E.: Recovery of protein structure from contact maps. Folding Des. 2, 295–306 (1997)

    Article  Google Scholar 

  96. Wang, L., Mettu, R.R., Donald, B.R.: A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data. J. Comput. Biol. 13(7), 1267–1288 (2006)

    Article  MathSciNet  Google Scholar 

  97. Wells, C., Glunt, W., Hayden, T.L.: Searching conformational space with the spectral distance geometry algorithm. J. Mol. Struct. (Theochem) 308, 263–271 (1994)

    Google Scholar 

  98. Wertz, D.A., Shi, C.X., Venanzi, C.A.: A comparison of distance geometry and molecular dynamics simulation techniques for conformational analysis of \(\beta \)-cyclodextrin. J. Comput. Chem. 13(1), 41–56 (1992)

    Article  Google Scholar 

  99. Williams, G.A., Dugan, J.M., Altman, R.B.: Constrained global optimization for estimating molecular structure from atomic distances. J. Comput. Biol. 8(5), 523–547 (2001)

    Article  Google Scholar 

  100. Wu, D., Wu, Z.: An updated geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data. J. Global Optim. 37, 661–673 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  101. Xu, H., Izrailev, S., Agrafiotis, D.K.: Conformational sampling by self-organization. J. Chem. Inform. Comput. Sci. 43(4), 1186–1191 (2003)

    Article  Google Scholar 

  102. Yang, L.: Solving spatial constraints with global distance coordinate system. Int. J. Comput. Geom. Appl. 16, 533–547 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon M. Crippen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crippen, G.M. (2013). Distance Geometry for Realistic Molecular Conformations. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds) Distance Geometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5128-0_15

Download citation

Publish with us

Policies and ethics