Skip to main content

Using a Distributed SDP Approach to Solve Simulated Protein Molecular Conformation Problems

  • Chapter
  • First Online:
Distance Geometry

Abstract

This chapter presents various enhancements to the DISCO algorithm (originally introduced by Leung and Toh(SIAM J. Sci. Comput. 31:4351–4372, 2009) for anchor-free graph realization in \({\mathbb{R}}^{d}\)) for applications to conformation of protein molecules in \({\mathbb{R}}^{3}\). In our enhanced DISCO algorithm for simulated protein molecular conformation problems, we have incorporated distance information derived from chemistry knowledge such as bond lengths and angles to improve the robustness of the algorithm. We also designed heuristics to detect whether a subgroup is well localized and significantly improved the robustness of the stitching process. Tests are performed on molecules taken from the Protein Data Bank. Given only 20% of the interatomic distances less than 6Åthat are corrupted by high level of noises (to simulate noisy distance restraints generated from nuclear magnetic resonance experiments), our improved algorithm is able to reliably and efficiently reconstruct the conformations of large molecules. For instance, given 20% of interatomic distances which are less than 6Åand are corrupted with 20% multiplicative noise, a 5,600-atom conformation problem is solved in about 30min with a root-mean-square deviation (RMSD) of less than 1Å.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In NMR experiments, certain protons may not be stereospecifically assigned. For such pairs of protons, the upper bounds are modified via the creation of “pseudoatoms,’ as is the standard practice in NOE experiments, given 3,798 distance and 450 chirality constraints, with three computed structures having an average RMSD of 2.08 Å from the known crystal structure.

  2. 2.

    The RMSD of 1.07 Å reported in Fig. 11 in [29] is inconsistent with that appearing in Fig. 8. It seems that the correct RMSD should be about 2–3 Å.

  3. 3.

    The interested reader may refer to the code for the details of how the selection is done.

References

  1. Ashida, T., Tsunogae, Y., Tanaka, I., Yamane, T.: Peptide chain structure parameters, bond angles and conformationai angles from the cambridge structural database. Acta Crystallographica B43, 212–218 (1987)

    Google Scholar 

  2. Atkins, P.: Inorganic Chemistry. Oxford University Press, New York (2006)

    Google Scholar 

  3. Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Proceedings of the third international symposium on Information processing in sensor networks, ACM Press, 46–54 (2004)

    Google Scholar 

  4. Biswas, P., Ye, Y.: A distributed method for solving semidefinite programs arising from ad hoc wireless sensor network localization. In: Hager, W.W. (ed.) Multiscale Optimization Methods and Applications, pp. 69–84. Springer, New York (2006)

    Chapter  Google Scholar 

  5. Biswas, P., Liang, T.-C., Toh, K.-C., Wang, T.-C., Ye, Y.: Semidefinite programming approaches for sensor network localization with noisy distance measurements. IEEE Trans. Autom. Sci. Eng. 3, 360–371 (2006)

    Article  Google Scholar 

  6. Biswas, P., Toh, K.-C., Ye, Y.: A distributed SDP approach for large scale noisy anchor-free graph realization with applications to molecular conformation. SIAM J. Sci. Comput. 30, 1251–1277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cornell, W., Cieplak, P.: A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  8. Cucuringu, M., Singer, A., Cowburn, D.: Eigenvector synchronization, graph rigidity and the molecule problem. arXiv:1111.3304v3 (2012)

    Google Scholar 

  9. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data. J. Global Optim. 26, 321–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Engh, R., Huber, R.: Accurate bond and angle parameters for x-ray protein structure refinement. Acta Crystallographica A47, 392–400. 1991.

    Google Scholar 

  11. Grooms, I.G., Lewis, R.M., Trosset, M.W.: Molecular embedding via a second-order dissimilarity parameterized approach. SIAM J. Sci. Comput. 31, 2733–2756 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Güler, O., Ye, Y.: Convergence behavior of interior point algorithms. Math. Program. 60, 215–228 (1993)

    Article  MATH  Google Scholar 

  13. Havel, T.F.: A evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Progr. Biophys. Mol. Biol. 56, 43–78 (1991)

    Article  Google Scholar 

  14. Havel, T.F., Wüthrich, K.: A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of 1h-1h proximities in solution. Bull. Math. Biol. 46, 673–698 (1984)

    MATH  Google Scholar 

  15. Havel, T.F., Kuntz, I.D., Crippen, G.M.: The combinatorial distance geometry approach to the calculation of molecular conformation. J. Theor. Biol. 104, 359–381 (1983)

    Article  Google Scholar 

  16. Hendrickson, B.: The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5, 835–857 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Laskowski, R., Moss, D.: Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067 (1993)

    Article  Google Scholar 

  18. Leung, N.-H., Toh, K.-C.: An sdp-based divide-and-conquer algorithm for large scale noisy anchor-free graph realization. SIAM J. Sci. Comput. 31, 4351–4372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. McMurry, J.: Organic Chemistry. Thompson, Belmont (2008)

    Google Scholar 

  21. Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Global Optim. 15, 219–234 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. So, A.M.-C., Ye, Y.: Theory of semidefinite programming for sensor network localization. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 405–414 (2005)

    Google Scholar 

  23. Toh, K.-C., Todd, M.J., Tutuncu, R.H.: The SDPT3 web page: http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

  24. Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3—a MATLAB software package for semidefinite programming. Optim. Meth. Software 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  25. Trosset, M.W.: Applications of multidimensional scaling to molecular conformation. Comput. Sci. Stat. 29, 148–152 (1998)

    Google Scholar 

  26. Trosset, M.W.: Distance matrix completion by numerical optimization. Comput. Optim. Appl. 17, 11–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Trosset, M.W.: Extensions of classical multidimensional scaling via variable reduction. Comput. Stat. 17, 147–163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tutuncu, R.H., Toh, K.-C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. Ser. B 95, 189–217 (2003)

    Article  MathSciNet  Google Scholar 

  29. Williams, G.A., Dugan, J.M., Altman, R.B.: Constrained global optimization for estimating molecular structure from atomic distances. J. Comput. Biol. 8, 523–547 (2001)

    Article  Google Scholar 

  30. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J. Sci. Comput. 26, 313–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Z., Zha, H.: A domain decomposition method for fast manifold learning. In: Proceedings of Advances in Neural Information Processing Systems, 18 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim-Chuan Toh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fang, X., Toh, KC. (2013). Using a Distributed SDP Approach to Solve Simulated Protein Molecular Conformation Problems. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds) Distance Geometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5128-0_17

Download citation

Publish with us

Policies and ethics