SpringerBriefs in Electrical and Computer Engineering

For further volumes: http://www.springer.com/series/10059

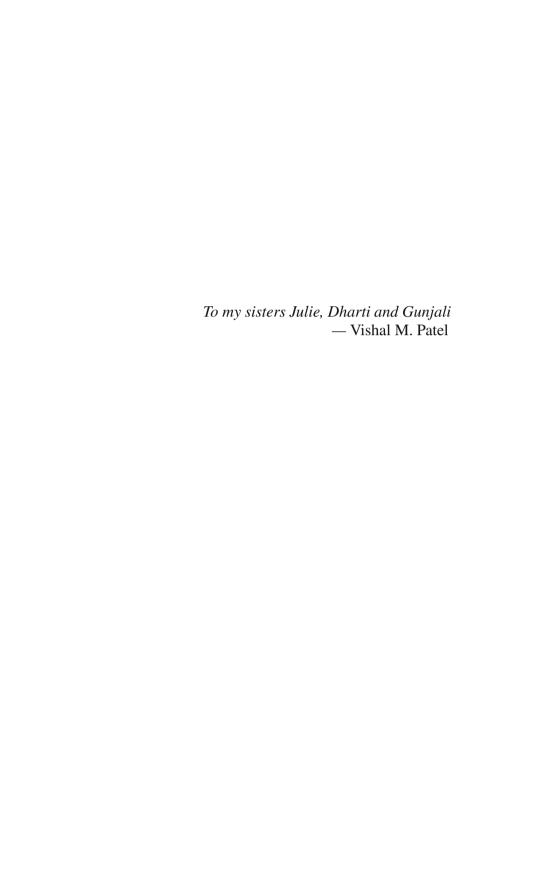
Sparse Representations and Compressive Sensing for Imaging and Vision

Vishal M. Patel Center for Automation Research University of Maryland A.V. Williams Building College Park, MD Rama Chellappa
Department of Electrical and Computer
Engineering and Center for
Automation Research
A.V. Williams Building
University of Maryland
College Park, MD

ISSN 2191-8112 ISSN 2191-8120 (electronic)
ISBN 978-1-4614-6380-1 ISBN 978-1-4614-6381-8 (eBook)
DOI 10.1007/978-1-4614-6381-8
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012956308

© The Author(s) 2013


This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Acknowledgements

We thank former and current students as well as collaborators - Richard Baraniuk, Volkan Cevher, Pavan Turaga, Ashok Veeraraghavan, Aswin Sankaranarayanan, Dikpal Reddy, Amit Agrawal, Nalini Ratha, Jaishanker Pillai, Hien Van Nguyen, Sumit Shekhar, Garrett Warnell, Qiang Qiu, Ashish Shrivastava - for letting us draw upon their work, thus making this monograph possible.

Research efforts summarized in this monograph were supported by the following grants and contracts: ARO MURI (W911NF-09-1-0383), ONR MURI (N00014-08-1-0638), ONR grant (N00014-12-1-0124), and a NIST grant (70NANB11H023).

Contents

1	1 Introduction				
	1.1	Outline	2		
2	Con	npressive Sensing	3		
	2.1	Sparsity	3		
	2.2	Incoherent Sampling	5		
	2.3	Recovery	6		
		2.3.1 Robust CS	7		
		2.3.2 CS Recovery Algorithms	9		
	2.4	Sensing Matrices	11		
	2.5	Phase Transition Diagrams	12		
	2.6	Numerical Examples	15		
3	Con	npressive Acquisition	17		
	3.1	Single Pixel Camera	17		
	3.2	Compressive Magnetic Resonance Imaging	18		
		3.2.1 Image Gradient Estimation	21		
		3.2.2 Image Reconstruction from Gradients	23		
		3.2.3 Numerical Examples	24		
	3.3	Compressive Synthetic Aperture Radar Imaging	25		
		3.3.1 Slow-time Undersampling	27		
		3.3.2 Image Reconstruction	28		
		3.3.3 Numerical Examples	29		
	3.4	Compressive Passive Millimeter Wave Imaging	30		
		3.4.1 Millimeter Wave Imaging System	31		
		3.4.2 Accelerated Imaging with Extended Depth-of-Field	34		
		3.4.3 Experimental Results	36		
	3.5	Compressive Light Transport Sensing	37		
4	Con	npressive Sensing for Vision	41		
	4.1	Compressive Target Tracking	41		
		4.1.1 Compressive Sensing for Background Subtraction	42		

x Contents

R۵	eferen	oces		95
7	Con	cluding	Remarks	93
	6.2 6.3		minative Dictionary Learninginear Kernel Dictionary Learning	86 90
	6.1		nary Learning Algorithms	85
6			Learning	85
_	D: 4		•	
		5.5.3	Experimental Results	82
		5.5.2	Composite Kernel Sparse Representation	81
	5.5	5.5.1	Multivariate Kernel Sparse Representation	80
	5.5		Space Multimodal Recognition	80
		5.4.3	Experimental Results	78
		5.4.1	Robust Multimodal Multivariate Sparse Representation	77
	J.4	5.4.1	nodal Multivariate Sparse Representation	76
	5.4		Experimental Results	74 75
		5.3.3 5.3.4	Kernel Simultaneous Orthogonal Matching Pursuit	72
		5.3.2	Kernel Orthogonal Matching Pursuit	72
		5.3.1	Kernel Orthogonal Matching Purguit	70
	5.3		near Kernel Sparse Representation	69
	5 2	Non 1:	using Sparse Representation	67
		5.2.1	Robust Biometrics Recognition	67
	5.2	-	Representation-based Classification	65
	5.1		Representation	63
5			resentation-based Object Recognition	63
_	Cna	maa Da	•	
		4.3.2	Numerical Examples	59
		4.3.1	Sparse Gradient Integration	57
	4.3		from Gradients	56
		4.2.3	Compressive Acquisition of Dynamic Textures	54
			for High Speed Imaging	53
		4.2.2	Programmable Pixel Compressive Camera	
		4.2.1	Compressive Sensing for High-Speed Periodic Videos	50
	4.2		ressive Video Processing	50
		4.1.5	Compressive Particle Filtering	48
		4.1.4	Compressive Sensing for Multi-View Tracking	47
		4.1.3	Joint Compressive Video Coding and Analysis	45
		4.1.2	Kalman Filtered Compressive Sensing	45