Skip to main content

Inertial Sensors and Their Applications

  • Chapter
  • First Online:
Book cover Handbook of Signal Processing Systems

Abstract

Due to the universal presence of motion, vibration, and shock, inertial motion sensors can be applied in various contexts. Development of the microelectromechanical (MEMS) technology opens up many new consumer and automotive applications for accelerometers and gyroscopes. The large variety of application creates different requirements to inertial sensors in terms of accuracy, size, power consumption and cost. It makes it difficult to choose sensors that are suited best for the particular application. Signal processing methods depend on the application and should reflect on the physical principles behind this application. This chapter describes the principles of operation of accelerometers and gyroscopes, different applications involving the inertial sensors. It also gives examples of signal processing algorithms for pedestrian navigation and motion classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In short, non-holonomic constraints allow to neglect the lateral and vertical speeds of the vehicle.

  2. 2.

    Scale factors are not exactly constant: for instance, the scale factors of MEMS sensors depend strongly on the temperature.

  3. 3.

    There exist higher-order Gauss–Markov process where the difference equation (3) contains older values of the process.

  4. 4.

    The growth is almost quadratic with small heading errors; however, with larger heading errors, the sine and cosine functions in (19) bound the error growth.

References

  1. Allan, D.W.: Statistics of atomic frequency standards. Proc. IEEE 54(2), 221–230 (1966)

    Article  Google Scholar 

  2. Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn. 43, 3605–3620 (2010)

    Article  MATH  Google Scholar 

  3. Armenise, M.N., Ciminelli, C., Dell’Olio, F., Passaro, V.: Advances in Gyroscope Technologies. Springer Verlag (2010)

    Google Scholar 

  4. Broffit, J.D.: Nonparametric classification. In: P.R. Krishnaiah, L.N. Kanal (eds.) Handbook of Statistics 2. North-Holland (1990)

    Google Scholar 

  5. Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering, 3rd edn. John Wiley & Sons (1997)

    Google Scholar 

  6. Collin, J.: Investigations of self-contained sensors for personal navigation. Dr. Tech. thesis, Tampere University of Technology (2006). URL http://webhotel.tut.fi/library/tutdiss/pdf/collin.pdf

  7. Foxlin, E.: Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer Graphics and Applications 25(6), 38–46 (2005)

    Article  Google Scholar 

  8. Gianchandani, Y.B., Tabata, O., Zappe, H.P.: Comprehensive microsystems. Elsevier (2008)

    Google Scholar 

  9. IEEE Std 528-2001: IEEE standard for inertial sensor terminology. standard, The Institute of Electrical and Electronics Engineers, Inc., New York, NY, U.S.A. (2001)

    Google Scholar 

  10. IEEE Std 647-1995: IEEE standard specification format guide and test procedure for single-axis laser gyros. standard, The Institute of Electrical and Electronics Engineers, Inc., New York, NY, U.S.A. (1996)

    Google Scholar 

  11. Jahn, J., Batzer, U., Seitz, J., Patino-Studencka, L., Gutiérrez Boronat, J.: Comparison and evaluation of acceleration based step length estimators for handheld devices. In: Proc. Int. Conf. on Indoor Positioning and Indoor Navigation, pp. 1–6. Zurich, Switzerland (2010)

    Google Scholar 

  12. Kantola, J., Perttunen, M., Leppänen, T., Collin, J., Riekki, J.: Context awareness for GPS-enabled phones. In: Proc. ION ITM, pp. 117–124. San Diego, CA (2010)

    Google Scholar 

  13. Käppi, J., Syrjärinne, J., Saarinen, J.: MEMS-IMU based pedestrian navigator for handheld devices. In: Proc. ION GPS, pp. 1369–1373. Salt Lake City, UT (2001)

    Google Scholar 

  14. Keshner, M.S.: 1 ∕ f noise. Proc. IEEE 70(3), 212–218 (1982)

    Article  Google Scholar 

  15. Kirkko-Jaakkola, M., Collin, J., Takala, J.: Bias prediction for MEMS gyroscopes. IEEE Sensors J. (2012). DOI 10.1109/JSEN.2012.2185692

    Google Scholar 

  16. Könönen, V., Mäntyjärvi, J., Similä, H., Pärkkä, J., Ermes, M.: Automatic feature selection for context recognition in mobile devices. Pervasive Mob. Comput. 6, 181–197 (2010)

    Article  Google Scholar 

  17. Krobka, N.I.: Differential methods of identifying gyro noise structure. Gyroscopy and Navigation 2, 126–137 (2011)

    Article  Google Scholar 

  18. Ladetto, Q.: On foot navigation: continuous step calibration using both complementary recursive prediction and adaptive Kalman filtering. In: Proc. ION GPS, pp. 1735–1740. Salt Lake City, UT (2000)

    Google Scholar 

  19. Leland, R.P.: Mechanical-thermal noise in MEMS gyroscopes. IEEE Sensors J. 5(3), 493–500 (2005)

    Article  Google Scholar 

  20. Levi, R.W., Judd, T.: Dead reckoning navigational system using accelerometer to measure foot impacts. U.S. Patent 5,583,776 (1996)

    Google Scholar 

  21. Meriheinä, U.: Method and device for measuring the progress of a moving person. U.S. Patent 7,962,309 (2007)

    Google Scholar 

  22. Mezentsev, O., Collin, J., Lachapelle, G.: Pedestrian Dead Reckoning – A Solution to Navigation in GPS Signal Degraded Areas. Geomatica 59(2), 175–182 (2005)

    Google Scholar 

  23. Misra, P., Enge, P.: Global Positioning System: Signals, Measurements, and Performance, 2nd edn. Ganga–Jamuna Press (2006)

    Google Scholar 

  24. Roetenberg, D., Luinge, H., Slycke, P.: Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors. Tech. rep., Xsens Motion Technologies BV (2009)

    Google Scholar 

  25. Savage, P.G.: Laser gyros in strapdown inertial navigation systems. In: Proc. IEEE Position, Location, and Navigation Symp. San Diego, CA (1976)

    Google Scholar 

  26. Sierociuk, D., Tejado, I., Vinagre, B.M.: Improved fractional Kalman filter and its application to estimation over lossy networks. Signal Process. 91(3), 542–552 (2011)

    Article  MATH  Google Scholar 

  27. Stirling, R., Collin, J., Fyfe, K., Lachapelle, G.: An innovative shoe-mounted pedestrian navigation system. In: Proc. ENC GNSS, pp. 110–115. Graz, Austria (2003)

    Google Scholar 

  28. Syrjärinne, J., Käppi, J.: Method and apparatus for lowering power use by a ranging receiver. U.S. Patent 7,409,188 (2008)

    Google Scholar 

  29. Titterton, D.H., Weston, J.L.: Strapdown Inertial Navigation Technology, 2nd edn. American Institute of Aeronautics and Astronautics, Reston, VA (2004)

    Book  Google Scholar 

  30. Voss, R.F.: 1 ∕ f (flicker) noise: A brief review. In: Proc. 33rd Ann. Symp. Frequency Control, pp. 40–46 (1979)

    Google Scholar 

  31. VTI Technologies Oy: SCC1300-D04 combined gyroscope and 3-axis accelerometer with digital SPI interfaces. rev. 1.0.3. Doc.Nr. 82 1131 00 A, Data sheet (2010)

    Google Scholar 

  32. Webb, A.: Statistical Pattern Recognition, 2nd edn. John Wiley & Sons, LTD (2002)

    Book  MATH  Google Scholar 

  33. Xsens MVN – inertial motion capture. URL http://www.xsens.com/en/general/mvn

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi Collin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Collin, J., Davidson, P., Kirkko-Jaakkola, M., Leppäkoski, H. (2013). Inertial Sensors and Their Applications. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6859-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6859-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6858-5

  • Online ISBN: 978-1-4614-6859-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics