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Abstract

For the most part, this article is a survey of concrete results in
extremal combinatorics obtained with the method of flag algebras.
But our survey is also preceded, interleaved and concluded with a few
general digressions about the method itself. Also, instead of giving
a plain and unannotated list of results, we try to divide our account
into several connected stories that often include historical background,
motivations and results obtained with the help of methods other than
flag algebras.

A foreword

When I was asked by the organizers to contribute something on flag algebras,
I was a bit uncertain at first. The reasons will become clear from the text
below, but a two-sentence summary is this. In just a few recent years we have
witnessed a tremendous explosion of activity in this area, and the explosion
is still ongoing. It does not look (at least to me) quite consistent with the
inevitable stamp of finality a full-fledged survey is supposed to convey.

As a consequence, this contribution has a very clear flavor of an account-
ing book. I will try my best to summarize in Section 3, in a categorized and
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annotated form, concrete results in extremal combinatorics obtained with the
method of flag algebras so far. Or, in other words, where do we stand now,
in February of 2013.

That said, I still feel obliged to say at least a few general words about
the method itself, and this is where we begin. This introductory part is
rather loose and informal, and a disinterested reader may proceed directly
to Section 2.

1. The method

The theory of flag algebras is supposed to treat in an entirely uniform way
all classes of combinatorial structures C that possess the hereditary property:
any subset of vertices of a structure from C gives rise to another (“induced”)
structure in C. A precise definition at the appropriate level of generality
is best given in logical terms [Raz07, §2], but for the purposes of this text
we can safely assume that C is the class of either ordinary simple graphs
or r-uniform hypergraphs (r-graphs) or oriented graphs (orgraphs). In this
section the specific choice of the class C is almost never important, and for
simplicity we will use the word “graph” cumulatively.

The main quantity studied in the part of extremal combinatorics that is
amenable to the method of flag algebras is the number i(H,G) of induced
copies (up to automorphisms of H) of a graph H in a larger graph G. One
of the most basic paradigms underlying the theory of flag algebras tells us to
normalize whenever possible so we immediately replace these numbers with
the corresponding densities and let

p(H,G)
def
=

(
L

ℓ

)−1

i(H,G) (L
def
= |V (G)|, ℓ def

= |V (H)|).

One useful interpretation is that p(H,G) is the probability that a randomly
chosen ℓ-subset of V (G) induces a subgraph isomorphic to H [Raz07, §2.1].

In many contexts, notably in the theory of graph limits, researchers are
often interested in the number of all copies, not necessarily induced, and
sometimes also other variants. It turns out, however, that all these variants
are essentially equivalent; let us review some simple formulas connecting
different versions (see [Lov12, Chapter 5.2.2]) as we will occasionally need
them below.

2



Let ind(H,G) be the number of induced embeddings α : V (H) −→ V (G),
that is embeddings preserving both adjacency and non-adjacency. Denoting
by

tind(H,G)
def
=

ind(H,G)

L(L− 1) · · · (L− ℓ+ 1)

the corresponding density, we see that ind(H,G) = |Aut(H)| · i(H,G) and,
hence,

tind(H,G) =
|Aut(H)|

ℓ!
p(H,G).

tinj(H,G) is defined similarly to tind(H,G) with the difference that now the
embedding α need not necessarily be induced, i.e. it must respect adjacencies
only. Clearly,

tinj(H,G) =
∑

H′⊇H

tind(H
′, G) =

1

ℓ!

∑
H′⊇H

|Aut(H ′)|p(H ′, G), (1)

and the inverse formula is given by the Möbius transform (see [Lov12, (5.20)]):

tind(H,G) =
∑

H′⊇H

(−1)|E(H′)|−|E(H)|tinj(H
′, G). (2)

Two more variants, homomorphism density t(H,G) [Lov12] and strong
homomorphism density [HHK+11, Section 2.3] are obtained from tinj(H,G), tind(H,G),
respectively, by dropping the requirement that the mapping α must be injec-
tive, followed by an obvious re-normalization. They are related to each other
via formulas completely analogous to (1), (2). There is no neat formula, how-
ever, relating “injective” densities p(H,G), tind(H,G), tinj(H,G) with their
non-injective versions: any such formula must necessarily involve the num-
ber of vertices L which is grossly inconsistent with the philosophy of flag
algebras. What is important, however, is that as L → ∞, the difference
between these two classes of measures becomes negligible (see e.g. [Lov12,
(5.21)]).

A significant part of extremal combinatorics studies arithmetic and Boolean
relations existing between the densities p(H1, G), . . . , p(Hh, G) (or sometimes
their equivalent versions tind(Hi, G), tinj(Hi, G)) where H1, . . . , Hh are small
fixed templates, and G is an unknown graph. Sometimes problems of inter-
est (like the Caccetta-Häggkvist conjecture that we will discuss in Section
3.3) also involve concepts like minimal/maximal degree; these fit into our
framework with very minimal changes.
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And the asymptotic extremal combinatorics additionally assumes that the
size of G is very large, and thus these relations are to be satisfied only in
the limit. More precisely, in every increasing sequence G1, G2, . . . Gn, . . . of
graphs we can by compactness choose a subsequence G′

1, . . . , G
′
n, . . . such that

all h limits limn→∞ p(Hν , G
′
n) (ν ∈ [h]) exist; denote them by ϕ(H1), . . . , ϕ(Hh).

The question is then re-phrased as follows: which properties should the tuple
(ϕ(H1), . . . , ϕ(Hh)) satisfy?

The next observation is that by going to an infinite subsequence we can en-

sure that the limits ϕ(H)
def
= limn→∞ p(H,G′

n) exist for all (countably many)
graphs H, not only those we are actually interested in. This follows from
Tychonoff’s theorem on the compactness of products of compact sets (that
in our particular case can be replaced by a simple diagonal argument). Such
sequences are called convergent, and the function ϕ that maps isomorphism
classes of finite graphs1 is a paradigmical example of what in the theory of
graph limits is called a simple graph parameter [Lov12, Chapter 4.1].

Convergent sequences of graphs {Gi} and associated graph parameters
ϕ make the main object of study in both theories: graph limits and flag
algebras. From this point, however, they diverge significantly: a logician
might have said that the theory of graph limits is semantical in its nature
while flag algebras strongly focus on syntax. Indeed, a very substantial part
of the theory of graph limits deals with the question of what is the actual limit
object for a converging sequence of graphs and with studying its properties.
This limit object was successfully described by Lovász and B. Szegedy for
ordinary graphs (graphons, see [Lov12, Chapter 7]), by Elek and B. Szegedy
for hypergraphs [Lov12, Chapter 23.3], and it looks as if a sort of a description
is possible even for directed graphs [Lov12, Chapter 23.5].

The approach taken by flag algebras is on the contrary manifestly mini-
malistic which is dictated by the utilitarian purpose of the theory. Semantics
is substantially demoted as not being very useful for proving new concrete
results; one immediate advantage of this is that the theory can be applied
to arbitrary combinatorial structures without any changes at all. Instead,
it focusses on developing syntactic tools for proving universal statements
about the quantities ϕ(H1), . . . , ϕ(Hh) using more or less formal manipula-
tions. A careful attention is paid to notational uniformity, simplicity and
transparency: this is particularly important since, as the experience shows,

1It is perhaps a good time to remind that in this section we use the word “graph” in a
broader sense that also includes hypergraphs, orgraphs etc.
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the method begins to bring real fruit dangerously close to the region where
it becomes unfeasible for purely computational reasons, see the discussion
in [FRV13, Section 4.1]. Another characteristic feature of the method is its
strong tendency to expose and exploit (usually simple) mathematical struc-
ture in an uniform way wherever it can be found. Besides obvious mathe-
matical connections, this paradigm, somewhat surprisingly, has its own non-
negligible utilitarian value. For example, it adds versatility to some existing
packages for working with flag algebras that can be easily re-programmed to
work with different types of combinatorial objects.

As we indicated at the beginning, this text is not intended to be an
exposition of the method itself. Almost all necessary formalism can be found
in the original paper [Raz07]; [Raz11b, Section 2.1.1] adds half a page of
notation and definitions that are particularly useful when one has to work
with several different types of combinatorial structures at once. An informal
account can be found in [Kee11, Section 7], and almost every paper with
concrete results surveyed below also strives to explain its own version of
the formalism in its own way. But in the next section 3 we will use the
distinction between “plain” (Cauchy-Schwarz) applications and those using
more advanced concepts. So we conclude with a somewhat informal account
of the fragment of the general theory that is necessary to understand this
distinction. This part is similar to quantum graphs, graph algebras, reflection
positivity etc. studied in the context of graph limits [Lov12, Part 2], but
there are also important differences dictated, as almost everything else in
flag algebras, by pragmatic purposes.

Let M be the set of all finite graphs up to an isomorphism, and RM
be the set of all their finite formal linear combinations with real coefficients.
Then any graph parameter ϕ can be extended by linearity to a linear mapping
RM → R that we will also denote by the same letter ϕ. Graph parameters
ϕ resulting from convergent sequences of graphs turn out to satisfy ϕ(f) = 0
for certain elements f ∈ RM expressing the most basic chain rule [Raz07,
Lemma 2.2]. Factoring out by these relations, we obtain a linear space that is
denoted by A0 (the meaning of the superscript 0 will become clear soon). It
turns out that for every pair H1, H2 of graphs, ϕ(H1)ϕ(H2) can be always ex-
pressed as ϕ(f) for an easily computable element f ∈ A0 not depending on ϕ.
This allows us to endow A0 with the structure of an associative commutative
algebra [Raz07, Lemma 2.4], and thus ϕ defines an algebra homomorphism
from this algebra to the reals. It clearly satisfies ϕ(H) ≥ 0 for any graph H,
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and we let Hom+(A0,R) denote the set of all algebra homomorphisms with
the latter property.

One extremely important fact is that at this point our search for “generic”,
“logical” relations satisfied by all graph parameters resulting from convergent
sequences is over. Namely, the “completeness theorem” ([Lov12, Theorem
11.52], [Raz07, Theorem 3.3]) states that every element ϕ ∈ Hom+(A0,R)
can be realized as a convergent sequence of graphs, and this allows us to focus
on Hom+(A0,R) as an axiomatic description of our main object of study. Of
course, even under this view, the intended semantical interpretation is still
indispensable for intuition and is occasionally used in arguments (see e.g.
[Raz07, Theorem 4.3]).

The backbone of the theory is made by the real cone C0
sem consisting of

all those f for which ∀ϕ ∈ Hom+(A0,R)(ϕ(f) ≥ 0), and what we refer to as
“plain” Cauchy-Schwarz applications is just a systematic way of finding “in-
teresting” elements in this cone by semi-definite programming. More specifi-
cally, all notions reviewed so far readily generalize to the relative framework
in which a prescribed number of vertices k spanning a prescribed graph σ
are labeled in all objects under consideration and are always required to be
preserved [Raz07, §2.1]. σ itself is called a type [of size k], relativized graphs
become flags [of type σ], and the relativized version Aσ is (finally!) called the
flag algebra. For every f ∈ Aσ we clearly have f 2 ∈ Cσ

sem, and we also have a
naturally defined averaging (or label-erasing) linear operator J·Kσ : Aσ −→ A0

preserving the set of positive elements: JCσ
semKσ ⊆ C0

sem [Raz07, Theorem 3.1].
This already provides us with a supply of non-trivial elements in C0

sem of the
form Jf 2Kσ (f ∈ Aσ), and we can also take their linear combinations with
non-negative coefficients. The resulting set is a quadratic sub-cone C0 ⊆ C0

sem

defined by positive semi-definite constraints. And when the size of all flags
involved is bounded by a constant ℓ (in a “typical” plain application of the
method ℓ varies between 4 and 6), the corresponding SDPs become finitely
defined, and, what is even more important can be handled by the existing
solvers2 sufficiently well to actually solve problems. This is what we will refer
to as the “plain” method, and in what follows we will use the word “plain”
in this rather technical and exact sense.

The structure that can be extracted from the objects Hom+(A0,R) is,
however, much richer than that and includes other things like various algebra

2In my own work, I interchangeably use CSDP [Bor99] and SDPA
http://sdpa.sourceforge.net/, and my special thanks go to their developers.
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homomorphisms allowing us to move true statements around [Raz07, §2.3],
ensembles of random homomorphisms extending a given one [Raz07, §3.2]
or variational principles [Raz07, §4.3]. We can not go into details here, but
in Section 3 we will sometimes mention these structures by name whenever
they are used in the arguments.

What are the relations between the cone C0
sem we are interested in and its

approximation C0 corresponding to what we can prove using Cauchy-Schwarz
arguments? Topologically, C0 is dense in C0

sem, and one does not even have
to use quadratic relations for that. Namely, it is a simple consequence of the
completeness result [Lov12, Theorem 11.52], [Raz07, Theorem 3.3] that the
linear subcone in C0 consisting of non-negative linear combinations of flags
is already dense in C0

sem.
In terms of logical complexity, however, the difference is huge. If we for

simplicity focus on rational points in these cones, then the sub-cone C0
ℓ ⊆ C0

consisting of all inequalities provable by using only ℓ-sized flags is decidable
and hence C0 =

∪
ℓ C0

ℓ is recursively enumerable. The fundamental result by
H. Hatami and Norin [HN11] states that C0

sem is not r.e. already for ordinary
simple graphs. Informally, this means that every proof system that will
try to generate true statements in the asymptotic extremal combinatorics
will necessarily be incomplete. Very recently, Lovett, H. Hatami, P. Hatami
and Norin have extended this result to the theory of 2-colored graphs with
distinguishable parts.

Finally, the theory of flag algebras has not appeared overnight out of
nowhere, it had many predecessors. First of all, most constructions and ar-
guments are modeled after their discrete counterparts that have been used in
extremal combinatorics for many decades. Next, one should definitely men-
tion the method of Lagrangians [MS65] that was perhaps the first successful
usage of analytical methods in the area. Quasi-random graphs [CGW89] are,
in our language, devoted to the study of one specific and, arguably, the most
natural element of Hom+(A0,R), and many central results and proofs there
have a distinct syntactic flavor. Bondy [Bon97] used what we would now call
“Cauchy-Schwarz calculus” in the specific context of the Caccetta-Häggkvist
problem.
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2. Notation

We review the main definitions for the case of simple r-uniform hypergraphs
(r-graphs in what follows), where r ≥ 2 is a fixed number. We will also be
occasionally considering oriented graphs3, but it is very straightforward how
to adopt our definitions to that case.

2.1. Turán densities

For two r-graphs F and G, G is F -free if it does not contain (not necessarily
induced) subgraphs isomorphic to F . Given a family F of r-graphs, G is
F-free if it is F -free for every F ∈ F . Let exH(n;F) be the maximal possible
number of induced copies of an r-graph H in an F -free r-graph on n vertices
and

πH(F)
def
= lim

n→∞

exH(n;F)(
n

|V (H)|

) .

In the language of flag algebras, πH(F) is the maximal possible value of ϕ(H),
where the maximum is taken over all ϕ ∈ Hom+(A0,R) for which ϕ(F̂ ) = 0
whenever F̂ contains a spanning subgraph isomorphic to some F ∈ F . We
let

π(F)
def
= π{e}(F),

where e is a single (hyper)edge. For better understanding the context of
this survey, it is useful to recall that in the case of ordinary simple graphs
the quantities π(F) are completely described by the Erdős-Stone-Simonovits
theorem [ES46, ES66]:

π(F) = 1− 1

r − 1
, (3)

where r
def
= min {χ(G) |G ∈ F }.

In order to cover more situations of interest, we define exmin,H(n;F), πmin,H(F)
analogously to π(F), but with the following two differences:

1. we are interested in the minimal possible number of induced copies of
H;

2. r-graphs from F are forbidden only as induced subgraphs.

3That is, directed graphs without loops, parallel or anti-parallel edges. By analogy with
the abbreviation “digraph”, in this survey oriented graphs will be often called orgraphs.
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Again, when H is a single (hyper)edge, exmin,H(n;F), πmin,H(F) are abbrevi-
ated to exmin(n;F), πmin(F). Very recently, Norin (personal communication)
was able to give a nice and complete description of πmin(F) for the case of
ordinary graphs. More generally, given a finite set F of graphs he fully de-
scribes the set D(F) ⊆ [0, 1] consisting of those x ∈ [0, 1] for which there
exists ϕ ∈ Hom+(A0,R) with ϕ(F ) = 0 (F ∈ F) and ϕ(e) = x. The situa-
tion for 3-graphs is very different, and some related results will be thoroughly
discussed in Section 3.4.

When F = {F} consists of a single graph, the quantities πH(F ) and
πmin,H(F ) can be readily generalized to their relaxed versions when instead of
forbidding copies of F entirely, we are interested in minimizing their number.
For example, given x ∈ [0, 1], we let

gFH(x)
def
= lim

n→∞

exH,x(n;F)(
n

|V (F )|

) , (4)

where exH,x(n;F) is the minimal possible density of copies of F in an r-
graph on n vertices in which the density of (induced) copies of H is at least
x. Thus, gFH is a non-decreasing function and πH(F ) is the maximal x for
which gFH(x) = 0.

2.2. Frequently used [or]graphs

Kℓ is a clique on ℓ vertices, Iℓ is an independent set on ℓ vertices, Cℓ [C⃗ℓ]

is a non-oriented [oriented, respectively] cycle of length ℓ, and Pℓ [P⃗ℓ] is a

non-oriented [oriented] path on ℓ vertices, i.e., of length (ℓ − 1). K⃗1,ℓ is the
oriented star on (ℓ + 1) vertices in which all edges are oriented from the
center.

2.3. Frequently used hypergraphs

Kr
ℓ is a complete r-graph on ℓ vertices, and Irℓ is an empty r-graph on ℓ

vertices (thus, Kℓ = K2
ℓ and Iℓ = I2ℓ ). Jk is the 3-graph on (k + 1) vertices

consisting of all
(
k
2

)
edges that contain a distinguished vertex v. Gℓ is the

uniquely defined 3-graph on 4 vertices with ℓ edges; thus, G4 = K3
4 , and G3

is often denoted by K−
4 . C5 is the 3-graph on 5 vertices with the edge set

{(123), (234), (345), (451), (512)}. F3,2 is the 3-graph, also on 5 vertices, with
the edge set {(123), (145), (245), (345)}.
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F̄ is the edge-complement of a (hyper)graph F (on the same set of ver-
tices). For a (hyper)graph F , λ(F ) is its Lagrangian defined as the maximal
possible edge density of all weighted hypergraphs resulted from placing prob-
ability distributions on the vertices of F .

3. Results

In our survey of existing results, we are trying to group them into a few
large groups centered either around a “big” problem or a reasonably broad
topic. In all these cases the contribution made by flag algebras has been very
substantial, but seldom it was exclusive. Therefore, we feel that our purpose
will be served better if we give more coherent account by including, whenever
appropriate, historical context, motivations, results proved by other methods
etc.

3.1. Clique densities

In this section we consider only simple ordinary graphs, and we are interested
in the functions gKr

Kp
(see (4)). The case p = 2 has received most attention,

and we abbreviate
gr(x)

def
= gKr

Kp
(x).

In words, gr(x) is the (asymptotically) minimal possible density of Kr in
graphs with edge density ≥ x.

The first general bound on gr(x) was proved by Goodman [Goo59]:

g3(x) ≥ x(2x− 1); (5)

in the framework of flag algebras his proof amounts to a one-line calculation
[Raz07, Example 11]. This result was later re-discovered by Nordhaus and
Stewart [NS63] who also conjectured that

g3(x) ≥
2

3
(2x− 1). (6)

Goodman’s bound (5) was extended to the case r = 4 by Moon and Moser
[MM62] as follows:

g4(x) ≥ x(2x− 1)(3x− 2) (x ≥ 2/3).
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Following the pattern, they also stated without proof the natural generaliza-
tion

gr(x) ≥
r−1∏
i=1

(ix− (i− 1))
(
x ≥ 1− 1

r − 1

)
(7)

for an arbitrary r; a complete proof was later provided in [KN78, LS83].
Values of the form x = 1− 1

t
are called critical. These are precisely edge

densities of complete balanced t-partite graphs, and at critical values the
right-hand side of (7) computes the densities of Kr in these graphs. Thus,
the bound (7) (and its partial case (5)) is tight at the critical points 1 − 1

t
;

the question is what is happening between them.
The bound (7) is convex. Let ψr(x) be the piecewise linear function

that is linear in every interval
[
1− 1

t
, 1− 1

t+1

]
and coincides with gr at

its ends. Then, by convexity, ψr(x) ≥ gr(x) (note that in the interval
[1/2, 2/3] the bound conjectured in (6) is precisely ψ3(x)). More generally,
let ψp

r (x) be the piecewise linear function that is linear in every interval[
gp
(
1− 1

t

)
, gp

(
1− 1

t+1

)]
and coincides with gr

(
1− 1

t

)
, gr

(
1− 1

t+1

)
at its

ends.
In the beautiful paper [Bol76], Bollobás proved that ψp

r (x) still provides
a lower bound on the function gKr

Kp
:

gKr
Kp

(x) ≥ ψp
r (x). (8)

A brief survey of these and related early developments can be found in
[Bol75].

We are not aware of any improvements on Bollobás’s bound (8) for p > 2
which, in our opinion, makes an interesting open problem. The follow-up
research concentrated on computing the functions gr(x).

As for upper bounds, let us consider a complete (t + 1)-partite graph
in which t parts are of the same size while the remaining part is smaller.
Given x ∈

[
1− 1

t
, 1− 1

t+1

]
, there exists an asymptotically unique graph in

this class with the edge density x. Computing the density of Kr in it leads
to the following (somewhat ugly) upper bound on gr(x):

gr(x) ≤
(t− 1)!

(t− r + 1)!(t(t+ 1))r−1
·
(
t− (r − 1)

√
t(t− x(t+ 1))

)

·
(
t+

√
t(t− x(t+ 1))

)r−1 (
x ∈

[
1− 1

t
, 1− 1

t+ 1

])
.


(9)
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This bound is concave in the interval
[
1− 1

t
, 1− 1

t+1

]
.

I was not able to trace the origin of the conjecture that the bound (9) is
actually tight, but in explicit form it appears already in the paper [LS83] by
Lovász and Simonovits. The same paper proved the conjecture in some sub-
intervals of the form

[
1− 1

t
, 1− 1

t
+ ϵr,t

]
, where ϵr,t is a (very small) constant.

The next development occurred in 1989 when Fisher [Fis89] proved4 that (9)
is tight for r = 3, t = 2.

And this is where flag algebras entered the stage. Firstly, Razborov
[Raz07, §5] independently re-discovered Fisher’s result. More generally, a
relatively simple calculation [Raz08, (3.6)] shows that if the bound (9) is
tight for some t and r = 4, then it is also tight for the same value of t and
r = 3. Fisher’s result follows immediately since (9) is tight when t = 2, r = 4
(both sides are zero).

Then, using much more involved flag-algebraic constructs and calcula-
tions, Razborov [Raz08] proved that the bound (9) is tight for r = 3 and an
arbitrary t. In the classification scheme outlined in Section 1, this proof is
certainly not plain, and in fact it barely uses Cauchy-Schwarz at all. Instead,
it significantly employs more elaborated parts of the theory like ensembles of
random homomorphisms or variational principles; we can not go into further
details here.

While the next two papers do not directly use the language of flag algebras
(see, however, the discussion at the conclusion of Section 1 in [Rei12]), the
proofs are still highly analytical. Nikiforov [Nik11] proved that (9) is tight
for r = 4 (and any t). And, finally, Reiher [Rei12] established the same
for arbitrary r, t thus completing the quest for computing the function gr
itself. Let me, however, remind here again that no progress on the relative
values gKr

Kp
for p > 2 has apparently been made since Bollobás’s seminal paper

[Bol76].
As for exact bounds, infinite blow-ups in general provide a powerful tool

for converting asymptotic results into exact ones. In our context (we will
discuss one more case in Section 3.5) this simple idea immediately implies
the bound

exe,x(n;Kr) ≥
nr

r!
gr

(
2m

n2

)
(10)

[Raz08, Theorem 4.1]. Nikiforov [Nik11, Theorem 1.3] showed that it is

4Fisher’s proof was incomplete as it implicitly used a fact about clique polynomials
unknown at the time. This missing statement, however, was verified in 2000.
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rather close to optimal.
Lovász and Simonovits [LS83] made several quite precise conjectures

about the behavior of exe,x(n;Kr) and the corresponding extremal config-
urations, but these conjectures still remain unanswered. A partial progress
toward them was made by Pikhurko and Razborov in [PR12]. Firstly, us-
ing a genuine flag-algebraic argument, they completely described the set
Φ ⊆ Hom+(A0,R) of all asymptotically extremal configurations, i.e., those ϕ
for which ϕ(K3) = g3(ϕ(K2)). Then, by standard techniques, [PR12] proved
stability, i.e. that actual extremal configurations are o(n2)-close to the con-
jectured ones in the edit distance. These are precisely the first two steps
of the program that we will discuss in the next section 3.2. The third step,
however (extracting an exact result from the stability version) is still missing.
And for r > 3 nothing along these lines seems to be known at all.

In conclusion, let me note again that since [Bol76] and [LS83] all improve-
ments have been very analytical in their nature. Proving comparable results
with entirely combinatorial techniques remains an unanswered challenge.

3.2. Turán’s tetrahedron problem

In this section we switch gears and work with 3-graphs. The value π(Kr
ℓ )

is unknown for any pair ℓ > r > 2, this is the famous Turán problem.
More information on its history and state of the art can be found in the
recent comprehensive survey [Kee11] (see also much older but still useful text
[Sid95]). In this section we concentrate on the simplest case r = 3, ℓ = 4,
with a brief digression to the next one, r = 3, ℓ = 5. π(K3

4) = 1− πmin(I
3
4 ),

and it will be convenient to us (partially for historical reasons) to switch to
this dual notation. Turán [Tur41] conjectured that πmin(I

3
4 ) = 4/9, and this

conjecture is sometimes called Turán’s (3,4)-problem or tetrahedron problem.
De Caen [Cae91], Giraud (unpublished) and Chung and Lu [CL99] proved
increasingly stronger lower bounds on πmin(I

3
4 ), the latter being of the form

πmin(I
3
4 ) ≥ 9−

√
17

12
≥ 0.406407.

A plain (remember that we use this word in a technical sense) flag-
algebraic calculation leads to the numerical bound

πmin(I
3
4 ) ≥ 0.438334 (11)

[Raz10] that was verified in [BT11] and later in [FRV13] using the flagmatic
software (we will discuss the latter in Section 4.1). The scale of this im-
provement reflects a general phenomenon: let me cautiously suggest that I
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am not aware of a single example of a non-exact bound in asymptotic ex-
tremal combinatorics that could not be improved by a plain application of
flag algebras.

The remaining results in this section were distinctly motivated by the
structure of known extremal configurations elaborated in a series of early pa-
pers by Turán [Tur41], Brown [Bro83], Kostochka [Kos82] and Fon-der-Flaass
[FdF88], and we review it first. Our description (borrowed from [Raz11b])
has a rather distinct analytical flavor; for more combinatorial treatment see
e.g. [Kee11, Section 7].

Let Γ be a (possibly infinite) orgraph without induced copies of C⃗4. Let
FDF (Γ) be the 3-graph on V (Γ) in which (u, v, w) spans an edge if and only
if Γ|{u,v,w} contains either an isolated vertex (i.e., a vertex of both in-degree
and out-degree 0) or contains a vertex of out-degree 2. Then FDF (Γ) does
not contain induced copies of I34 [FdF88].

Next, let Ω
def
= Z3 × R, and consider the (infinite) orgraph ΓK = (Ω, EK)

given by

EK
def
= {⟨(a, x), (b, y)⟩ | (x+ y < 0 ∧ b = a+ 1) ∨ (x+ y > 0 ∧ b = a− 1)} .

ΓK does not have induced copies of C⃗4 and hence FDF (Γ) does not contain
induced copies of I34 . The set of known extremal configurations when the
number of vertices is divisible by three is precisely the set of all induced
subgraphs of this 3-graph that are of the form FDF (ΓK |Z3×S), where S is
an arbitrary finite set of reals.

Turán’s original configuration [Tur41] corresponds to the case when S ⊆
R+. Brown’s examples are obtained when negative entries in S are allowed,
but are always smaller in absolute values than positive entries. Kostochka’s
examples [Kos82] correspond to arbitrary finite S. And if we replace [the
uniform measure on] S by a non-atomic measure on the real line, we will
get a full description of all known ϕ ∈ Hom+(A0,R) with ϕ(I34 ) = 0 and
ϕ(e) = 4/9.

Turán’s original example does not contain induced copies of G3 which
implies πmin(I

3
4 , G3) ≤ 4

9
. Razborov [Raz10] proved that in fact

πmin(I
3
4 , G3) =

4

9
(12)

which also was the first application of the method in its genuinely plain
form. Baber and Talbot [BT12, Theorem 25] gave a list of ten 3-graphs

14



{H1, . . . , H10} on six vertices for which non-induced results of the same nature
hold: π(K3

4 , Hi) =
5
9
(1 ≤ i ≤ 10); their proof method is also plain.

Pikhurko [Pik11] proved that for a sufficiently large n, Turán’s example
is the only 3-graph on which exmin(n; I

3
4 , G3) is attained. This was also one

of the first papers to demonstrate the three-step program for converting
asymptotic flag-algebraic results into exact ones:

1. Describe the set of all extremal elements in Hom+(A0,R) (which in this
particular case consists of a single element).

2. Prove stability, that is that the convergence in the pointwise topology
described in Section 1 can be strengthened to convergence in the edit
distance.

3. Move from stability to exact results using combinatorial techniques.

Let us now take a brief de-tour and discuss a couple results of similar
nature inspired by the next case r = 3, ℓ = 5 in Turán’s problem. The
situation with computing πmin(I

3
5 ) itself is very similar to πmin(I

3
4 ): Turán’s

conjecture says that πmin(I
3
5 ) = 1/4, and there are many non-isomorphic

configurations realizing this bound. The simplest of them given by Turán
himself is the disjoint union K3

n/2

.
∪ K3

n/2 of two cliques of the same size. Let
H1, H2 be the two non-isomorphic 3-graphs on 5 vertices with precisely two
edges. Then they are missing in Turán’s example above, and Falgas-Ravry
and Vaughan proved in [FRV13] that

πmin(I
3
5 , H1, H2) = 1/4

which is analogous to (12). Their proof method is plain.
To review another remarkable result, it is convenient to switch to the

dual notation. Turán’s construction from the previous paragraph implies
that π(K3

5) ≥ 3/4 and, more generally, π(G) ≥ 3/4 for any 3-graph G that is
not 2-colorable. In particular, this applies to critical (that is, edge minimal)
3-graphs on six vertices with chromatic number 3. There are precisely six
such graphs; one of them being K3

5 plus an isolated vertex (in other words,
J̄5) and, obviously, π(K3

5) = π(J̄5). Quite remarkably, using flag algebras,
Baber [Bab11, Theorem 2.4.1] proved that π(G) = 3/4 for every one of the
remaining five graphs on the list; his proof is plain.

We now return to the tetrahedron problem. Clearly, not all graphs with-
out copies of I34 can be realized in the form FDF (Γ), and Fon-der-Flaass
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[FdF88] asked whether Turán’s conjecture can at least be proved for 3-graphs
of his special form. He himself showed a lower bound of 3/7 (superseded by
(11)). While the Fon-der-Flaass conjecture is still open, Razborov [Raz11b]
verified it under either one of the two following assumptions:

1. Γ is an orientation of a complete t-partite graph (not necessarily bal-
anced) for some t;

2. The edge density of Γ is ≥ 2/3− ϵ for some absolute constant ϵ.

Note that 2) settles a local version of the Fon-der-Flaass conjecture, that is
proves it in an open neighborhood of the set Φ ⊆ Hom+(A0,R) of known
extremal configurations. The proof method is a combination of plain and
more sophisticated techniques heavily based upon working with several dif-
ferent kinds of combinatorial structures at once and frequently transferring
auxiliary results from one context to another. The author expresses his hope
that this kind of interaction (mostly human reasoning aided in appropri-
ate places by the hammer-like power of plain flag-algebraic arguments) will
become increasingly more popular in the area.

The result (12) is relevant only to the original extremal example given by
Turán as all others contain plenty of induced copies of G3. Razborov [Raz12]
identified three 3-graphs on 5 vertices given by their set of edges as follows:

E(H1)
def
= {(123)(124)(134)(234)(125)(345)}

E(H2)
def
= {(123)(124)(134)(234)(135)(145)(235)(245)}

E(H3)
def
= {(123)(124)(134)(234)(125)(135)(145)(235)(245)}

and proved that
πmin(I

3
4 , H1, H2, H3) = 4/9. (13)

The motivation behind this result is that, as induced subgraphs, H1, H2, H3

are missing in FDF (ΓK) and, thus, in all known extremal configurations.
Flag algebras are used in this proof only “behind the scene”, but the proof
method itself deserves a few words here. Let us call a 3-graph H singular if
its edge set is not a superset of E(FDF (Γ)) for any orgraph Γ which is an
orientation of a complete t-partite graph (cf. the first result from [Raz11b]

cited in item 1) on page 16) and does not contain induced copies of C⃗4. Then
[Raz12] proved that

π̂H(H1, H2, H3) = 0,
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where H is an arbitrary singular 3-graph and π̂H(F) is defined similarly to
πH(F), with the difference that only induced copies of elements in F are
forbidden. The proof uses Ramsey theory, and the main result (13) follows
almost immediately from this and the first result in [Raz11b]. We are not
aware of a similar “zero-inducibility” phenomenon that would not have held
for some trivial reasons.

In conclusion, [Raz11b, Raz12] provide several results that verify Turán’s
conjecture for several natural classes containing the set ΦTuran of all known
extremal examples. None of them, however, covers an open neighborhood of
ΦTuran, and we believe that obtaining such a local result would have been
a major step toward resolving the unrestricted version of the tetrahedron
problem.

3.3. Caccetta-Häggkvist conjecture

In this section we work with oriented graphs.
In 1970, Behzad, Chartrand and Wall [BCW70] asked the following ques-

tion: if G is a bi-regular orgraph on n vertices of girth (ℓ + 1) (i.e., C⃗k-free
for any k ≤ ℓ), how large can be its degree? They conjectured that the
answer is ⌊n−1

ℓ
⌋ and presented a simple construction attaining this bound.

Eight years later, Caccetta and Häggkvist [CH78] proposed to lift in this
conjecture the restriction of bi-regularity and, moreover, restrict attention to
minimal outdegree only. In other words, they asked if every orgraph without
oriented cycles of length ≤ ℓ must contain a vertex of out-degree ≤ n−1

ℓ
, and

it is this question that became known as the Caccetta-Häggkvist conjecture.
Like in the previous section 3.2 we concentrate on the case ℓ = 3 even if some
prominent work has been done for higher values of ℓ.

Let c be the minimal x for which every C⃗3-free orgraph on n vertices
contains a vertex of outdegree ≤ (c + o(1))n; the Caccetta-Häggkvist con-
jecture then says5 that c = 1/3. Caccetta and Häggkvist themselves proved

the bound c ≤ 3−
√
5

2
≈ 0.382 [CH78]. In the paper [Bon97] that, as we ac-

knowledged in Section 1, was one of the predecessors of flag algebras, Bondy
proved that c ≤ 2

√
6−3
5

≤ 0.379. His proof is essentially what we would call

here a plain application of the method using C⃗3-free orgraphs on 4 vertices
(there are 32 of them). However, instead of actually solving the resulting
SDP, Bondy gives a hand-manufactured (non-optimal) solution to it. Shen

5It is well-known that its asymptotic and exact versions are equivalent.
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Figure 1: Forbidden orgraphs.

[She98] improved this to c ≤ 0.3543, and Hamburger, Haxell and Kostochka
[HHK07] proved a bound of c ≤ 0.3532.

The current record of c ≤ 0.3465 was established by Hladký, Král’ and
Norin in [HKN09] using flag algebras. After incorporating an inductive ar-
gument previously used by Shen in [She98], their proof method is mostly
plain, but it also introduces one more novel and important feature. Namely,
[HKN09] utilizes a result by Chudnovsky, Seymour and Sullivan [CSS08] on
eliminating cycles in triangle-free digraphs that is only somewhat related to
the Caccetta-Häggkvist conjecture, and adding that auxiliary result to the
computational brew is paramount for the improvement. Again, I would like
to express my hope that in future we will see more examples of interaction
of this sort between different problems.

As for partial but exact results, Razborov [Raz11a] proved the Caccetta-
Häggkvist conjecture under the additional assumption that the three or-
graphs on Figure 1 are missing as induced subgraphs. Like in the previous
section, the point here is that these orgraphs are missing in all known ex-
tremal configurations; for the description of the latter see [Bon97, Section
3] and [Raz11a, Section 2]. The proof is not plain and in fact does not use
Cauchy-Schwarz at all. Moreover, all concrete calculations are so simple that
the proof was presented in an entirely finite setting but using flag-algebraic
notation.

3.4. Topics in hypergraphs motivated by the Erdős-
Stone-Simonovits theorem

From this point on, all flag-algebraic proofs we review are plain. Therefore,
we will normally omit this qualification.
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As we already noted in Section 2, the Erdős-Stone-Simonovits theorem
(3) completely settles the question of computing π(F) for finite families of
ordinary graphs. But it also implies several interesting structural conse-
quences pertaining to the behavior of this function. In this section we survey
a few contributions to the hypergraph theory bound together by the gen-
eral intention to understand how precisely badly does this theorem fail for
hypergraphs.

To start with, (3) implies that π(F) = minF∈F π(F ) (one direction is
obvious), and by analogy with objects like principal ideals etc. it is natural to
say that for ordinary graphs the function π(F) displays principle behavior. It
is also natural to ask if this is true for hypergraphs, and, indeed, Mubayi and
Rödl [MR02] conjectured that non-principal families F (i.e., those for which
π(F) < minF∈F π(F )) exist already for 3-graphs. They further conjectured
that they exist even with |F| = 2.

The first question was answered in affirmative by Balogh [Bal02], but, in
his own words, “the cardinality of the set F is not immediately obvious”.
The second question was answered by Mubayi and Pikhurko [MP08] who
showed that the pair (K3

4 , J5) is not principal.
From the discussion in [MR02] it is sort of clear that the authors expect

the pair (G3, C5) to be non-principal, and to that end they note the known
inequality

π(G3) ≥
2

7
[FF84], (14)

as well as prove new results π(C5) ≥ 0.464 and π(G3, C5) ≤ 10
31
.

Using flag algebras, Razborov [Raz10] improved the latter bound to

π(G3, C5) ≤ 0.2546 <
2

7

thus proving that (G3, C5) is indeed a non-principal pair. Then Falgas-
Ravry and Vaughan [FRV13], also using flag algebras, proved that the pairs
(G3, F3,2) and (K3

4 , J4) are non-principal. The former example is remarkable
since they were also able to compute

π(G3, F3,2) =
5

18
,

and π(F3,2) = 4
9
had been known before [FPS03] (for a several-line flag-

algebraic proof of this result see [Raz10, Theorem 5]). Nonetheless, π(G3) is
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still unknown, and it is interesting to note in this respect that we still do not
know of any example of a non-principal family F for which we can actually
compute all involved quantities π(F) and π(F ) (F ∈ F).

Another obvious consequence of the Erdős-Stone-Simonovits theorem is
that for ordinary graphs, π(F) is always rational. The book [CG98] mentions
the conjecture, believed to be due to Erdős, that this will also be the case
for r-graphs. This conjecture was disproved using flag algebras by Baber
and Talbot [BT12] who gave a family of three 3-graphs F such that π(F) =

λ(F3,2) =
189+15

√
15

961
. It was also independently disproved by Pikhurko using

different methods [Pik12b], but his family F is huge.

Yet another consequence of the Erdős-Stone-Simonovits theorem is that in
case of ordinary graphs, for any α ∈ [0, 1) the density bound π(F) ≤ α can be
forced by a finite family F such that all graphs G ∈ F have larger density ≥ β
for some fixed β > α. Moreover, the graphs G ∈ F can be made arbitrarily
large, and (this is important!) β does not depend on minG∈F |V (G)|. For
example, if α ∈ [1/2, 2/3), then this property is witnessed by taking β = 2/3
and letting F consist of a single balanced complete tri-partite graph. α is
said to be a jump for an integer r ≥ 2 if the analogous property holds for
r-graphs.

Erdős [Erd71] showed that for all r, every α ∈
[
0, r!

rr

)
is a jump and

conjectured that, like in the case of ordinary graphs, every α ∈ [0, 1) is
a jump. And perhaps the most surprising fact about jumps is that this
“jumping constant conjecture” is not true. The first examples of non-jumps
were given by Frankl and Rödl in [FR84], and a number of other examples

followed. All of them, however, live in the interval
[
5r!
2rr
, 1
)
, and what happens

in between (i.e., for α ∈
[
r!
rr
, 5r!
2rr

)
) was a totally grey area.

Using flag algebras, Baber and Talbot [BT11] gave the first example of
jumps in this intermediate interval by showing that all α ∈ [0.2299, 0.2316)
are jumps for r = 3. Their proof also uses a previous characterization from
[FR84] that allows to get rid of the condition that G ∈ F must be arbitrarily
large by considering their Lagrangians instead. Given this reduction, Baber
and Talbot produced a set F consisting of five 3-graphs on 6 vertices such
that λ(F ) ≥ 0.2316 (F ∈ F) while π(F) ≤ 0.2299. It is worth noting that
whether α = 2/9 is a jump for r = 3 (which was one of the questions asked
in the original paper by Erdős) still remains open.
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3.5. Induced H-densities

So far we predominantly dealt with “normal” Turán densities π(F), πmin(F),
i.e. special cases of πH(F), πmin,H(F) when H is a (hyper)edge. In this
section on the contrary we review a few results proven with the help of flag
algebras in which the graph H is more complicated.

Triangle-free graphs need not be bipartite. But how exactly far from
being bipartite can they be? In 1984, Erdős [Erd84, Questions 1 and 2]
considered three quantitative refinements of this question, and one of them
was to determine exC5(n,K3). Györi [Gyo89] had a partial result in that
direction.

The asymptotic version of Erdős’s question was solved using flag algebras
by H. Hatami et. all [HHK+11] and Grzesik [Grz12] who independently
proved that

πC5(K3) =
5!

55
. (15)

The standard trick with blow-ups (cf. (10)) immediately implies that

exC5(5ℓ,K3) = ℓ5. (16)

[HHK+11] also proved that the infinite blow-up of C5 is the only element
ϕ ∈ Hom+(A0,R) realizing equality in (15), and that the finite balanced
blow-up of C5 is the only graph realizing equality in (16). Remarkably, the
proof of the latter result bypasses the stability approach outlined in Section
3.2. Namely, given a finite K3-free graph G, instead of viewing this graph
as a member of a converging sequence, [HHK+11] simply considers its in-
finite blow-up ϕG ∈ Hom+(A0,R) and directly applies to it the asymptotic
uniqueness result.

When n = 5ℓ+ a (1 ≤ a ≤ 4), [HHK+11] also proved that exC5(n,K3) =
ℓ5−a(ℓ + 1)a, the equality being attained at almost balanced blow-ups of
C5. But this proof already uses the traditional stability approach, and, as a
consequence, works only for sufficiently large n.

Somewhat similar in spirit is another question asked by Erdős in [Erd62].
The Ramsey theorem is equivalent to the statement that for any fixed k, ℓ >
0, for all sufficiently large n we have exmin,Ik(n,Kℓ) > 0. Erdős asked about
the quantitative behavior of this function and conjectured that the minimum
is attained for the balanced (ℓ− 1)-partite graph. Asymptotically, if we let

ck,ℓ
def
= πmin,Ik(Kℓ),
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Erdős’s conjecture says that

ck,ℓ = (ℓ− 1)1−k. (17)

This was disproved by Nikiforov [Nik01] who observed that the blow-up of
C5 we just discussed in a different context actually implies that c4,3 ≤ 3

25
.

Moreover, Nikiforov showed that Erdős’s conjecture (17) can be true only for
finitely many pairs (k, ℓ).

Using flag algebras, Das et. all [DHM+12] and Pikhurko [Pik12a] inde-
pendently proved that c3,4 = 1/9 (thus confirming Erdős’s conjecture in this
case) and that c4,3 = 3/25 (thus showing that Nikiforov’s counterexample
is the worst possible). Both papers use the stability approach to get exact
results for sufficiently large n. [DHM+12, Section 6] states that their unver-
ified calculations confirm Erdős’s conjecture in two more cases: c3,5 = 1/16
and c3,6 = 1/25. Both these calculations were verified by Vaughan (re-
ferred to in [Pik12a]) who also confirmed Erdős’s conjecture in one more case:
c3,7 = 1/36. Along the other axis, Pikhurko [Pik12a] calculated c5,3, c6,3 and
c7,3.

Let us now discuss “pure” inducibility i(H) of a graph/orgraph/hypergraph
H that in our notation is simply equal to πH(∅).

There is one self-complimentary graph on 4 vertices, P4 and five compli-
mentary pairs which (since πH(∅) = πH̄(∅)) give rise to six different problems
of determining πH(∅). One of them (K4/I4) is trivial, and two problems had
been solved before with other methods.

Using flag algebras, Hirst [Hir11] solved two more cases: he showed that

πK4−K2(∅) =
72

125

and that

πK4−P3(∅) =
3

8
.

Thus, now P4 is the only remaining graph on 4 vertices whose inducibility is
still unknown.

Sperfeld [Spe11] studied inducibility for oriented graphs. Using flag alge-
bras, he showed that πC⃗3

(∅) = 1
4
and obtained a few non-exact results im-

proving on previous bounds: πP⃗3
(∅) ≤ 0.4446 (the conjectured value is 2/5),

πC⃗4
(∅) ≤ 0.1104 and πK⃗1,2

(∅) ≤ 0.4644. Then Falgas-Ravry and Vaughan

[FRV12] were able to actually compute the latter quantity:

πK⃗1,2
(∅) = 2

√
3− 3.

22



They also computed πK⃗1,3
(∅) that turned out to be a rational function in a

root of a cubic polynomial.
In the department of 3-graphs, the same paper [FRV12] calculated the

inducibility of G2:

πG2(∅) =
3

4
.

Slightly stretching our notation, let πm.k(∅) be the minimal induced density
of the collection of all 3-graphs on m vertices with exactly k edges (thus e.g.
πG2(∅) = π4.2(∅)). Falgas-Ravry and Vaughan also proved in [FRV12] that

π5.1(∅) = π5.9(∅) =
5

8

and

π5.k(∅) =
20

27
(3 ≤ k ≤ 7).

3.6. Miscellaneous results

A graph H is common if the sum of the number of its copies (not necessarily
induced) in a graph G and the number of such copies in the complement of
G is asymptotically minimized by taking G to be a random graph. Erdős
[Erd62] conjectured that all complete graphs are common, and this conjecture
was disproved by Thomason [Tho89] who showed that for p ≥ 4, Kp is not
common. It is now known that common graphs are very rare, and several
authors specifically asked if the wheel W5 shown on Figure 2 is common.

W5

Figure 2: The 5-wheel.

This question becomes amenable to the (manifestly induced) framework
of flag algebras by using the transformation (1). And, indeed, H. Hatami
et. all [HHK+12] proved that W5 is common. This is the only result in
our survey where optimization takes place over a rather complicated linear
combination of “primary” induced densities rather than individual densities.
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Erdős et. all asked in [EFGS89] a question that later became known as
the (2/3)-conjecture. Given a 3-coloring of the edges of Kn, what is the
smallest t such that there exists a color c and a set A of t vertices whose
c-neighborhood has density at least 2/3? The conjecture says that t = 3, the
previously known bound was t = 22, and using flag algebras, Král’ et. all
proved in [KLS+13] that one can actually take t = 4.

In [KMS12], Král’, Mach and Sereni looked at the following geometric
problem resulted from the work by Boros and Füredi [BF84] and Bárány
[Bar82]. What is the minimal constant cd such that for every set P of n
points in Rd in general position there exists a point of Rd contained in at
least cd

(
n

d+1

)
d-simplices with vertices at the points of P . As stated, it is not

amenable to the approach of flag algebras, but Gromov [Gro10] was able to
find a topological approach to it, and its later expositions (see [KMS12] for
details) brought it rather close to that realm. One remaining concepts that
still can not be handled by flag algebras in full generality is that of Seidel
minimality as it quantifies over arbitrary sets of vertices. Král’, Mach and
Sereni, however, showed that by applying this property only to certain sets
definable in this language they can improve known bounds on cd.

In the rest of this section we review a few more results about 3-graphs
obtained with the method of flag algebras that were not addressed in our
previous account. This activity started with the Mubayi challenge when all
exact results presented to the author by Dhruv Mubayi found their new flag-
algebraic proofs in [Raz10, Section 6.2] of varying and surprisingly unpre-
dictable computational difficulty. [Raz10] also gave a few non-exact results,
of which we would like to mention here only π(G3) ≤ 0.2978 later improved
by Baber and Talbot [BT11] to π(G3) ≤ 0.2871 which is already quite close
to the conjectured value 2/7 (see (14)).

Baber and Talbot [BT12] go over “critical” densities 2/9, 4/9, 5/9, 3/4
(recall that π(F3,2) = 4/9 and 5/9, 3/4 are conjectured values for π(K3

4), π(K
3
5),

respectively). For every α from this set they were able to construct one (for
α = 2/9) or more (for α ∈ {4/9, 5/9, 3/4}) 3-graphs F with π(F ) = α.

Falgas-Ravry and Vaughan [FRV13] proved, besides the results we already
cited above in various contexts, several more exact results:

π(G3, C5, F3,2) =
12

49
,

π(G3, F3,2) =
5

18
,
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π(J4, F3,2) =
3

8
.

In the second paper [FRV12] of the same authors they prove (again, in ad-
dition to what we already surveyed before) several more inducibility results:

πG3(K
3
4) =

16

27
, πG3(F3,2) =

27

64
, πK3

4
(F3,2) =

3

32

πG2(C5, F3,2) =
9

16
, πG2(G3, F3,2) =

5

9
, πG2(G3, C5, F3,2) =

4

9
.

Two forthcoming papers study codegree density π2(F ) for 3-graphs (see
[Kee11, Section 13.2] for definitions). Falgas-Ravry, Marchant, Pikhurko
and Vaughan give a new flag-algebraic proof of the result π2(F3,2) = 2/3
from Marchant’s thesis. In the second paper, Falgas-Ravry, Pikhurko and
Vaughan prove that π2(G3) = 1/4.

4. Concluding remarks

4.1. Flagmatic software

In the first few years since the inception of the method, researchers who
needed it for their work had to write the code on their own, the only thing
that was available from the shelf were SDP-solvers like CSDP [Bor99] or
SDPA. It appears as if these home-made pieces of software greatly differ in
the level of their public availability, user-friendliness and, most important,
versatility. Like in many other similar scenarios, it can be expected that
this period of anarchy will eventually be over, and the separation between
users and developers (with the clear understanding that these two groups
are likely to overlap significantly) will be defined more clearly. This will also
likely imply that the many ad hoc programs around will give way to one or
a few “standard” packages, and researchers that are new to the method will
largely lose the initiative to program on their own.

One very serious bid to become such a “golden standard” has been made
by the Flagmatic software developed by Vaughan and, in fact, many results
that we surveyed above were obtained using this program. It is publicly
available from http://www.flagmatic.org, and (from everything I know)
it is user-friendly. Versatility is also improving: while this project started
with 3-graphs, the last version 2 also has support for ordinary graphs and
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oriented graphs. Time will tell if Flagmatic gets a serious competitor, but at
the moment this seems to be the only option for a researcher who needs to
use the method on a reasonably recurrent basis but does not want to invest
time into writing his/her own code.

4.2. Beyond Turán densities?

Turán densities for dense graphs is by far not the only area in discrete math-
ematics and beyond where Cauchy-Schwarz and positive semi-definite pro-
gramming are used extensively. Thus, it is natural to wonder if formal meth-
ods similar to flag algebras can be applied elsewhere. In cases we potentially
have in mind it is more or less clear how to come up with a mathematically
beautiful calculus that “works in theory”. But our question is more prag-
matic: can it be done in such a way that it will actually allow to prove new
concrete results in the area in question. See [FRV13, Section 4.1] for a very
relevant discussion of the complexity barrier that (as we believe) prevents us
from getting many more, and possibly very great, results with this method
even on its home field, asymptotic extremal combinatorics.

We are aware of two moderate but concrete and successful steps in that
direction. Baber [Bab11, Chapter 2.5] (some of these results were later inde-
pendently re-discovered by Balogh et. all in [BHLL12]) extends the method
to Turán densities for subgraphs of the hypercube Qn. The latter is a rather
sparse graph, so significant modifications are necessary. And Norin and Zwols
(personal communication) started considering applications of the flag algebra
framework to the study of crossing numbers, particularly of the complete bi-
partite graph Kn,n. They already were able to get a numerical improvement
on the previously best known bound from [dKPS07].

One more paper that might be mentioned here is the work by Král’, Mach
and Sereni [KMS12] on the Boros-Füredi-Bárány problem that we already
discussed in Section 3.6. But their approach is sort of opposite: they “mas-
sage” the problem they are interested in until it fits nicely the framework of
flag algebras as originally defined in [Raz07].
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