Skip to main content

Set Theory: Geometric and Real

  • Chapter
  • First Online:
Book cover The Mathematics of Paul Erdős II
  • 1913 Accesses

Abstract

In this Chapter we consider P. Erdős’ research on what can be called as the borderlines of set theory with some of the more classical branches of mathematics as geometry and real analysis. His continuing interest in these topics arose from the world view in which the prime examples of sets are those which are subsets of some Euclidean spaces. ‘Abstract’ sets of arbitrary cardinality are of course equally existing. Paul only uses his favorite game for inventing new problems; having solved some problems find new ones by adding and/or deleting some structure on the sets currently under research.

Research supported by Hungarian National OTKA Fund No. 2117.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. U. Abraham: Free sets for nowhere-dense set mappings, Israel Journal of Mathematics, 39 (1981), 167–176.

    Article  MathSciNet  Google Scholar 

  2. F. Bagemihl: The existence of an everywhere dense independent set, Michigan Mathematical Journal 20 (1973), 1–2.

    Google Scholar 

  3. J. E.Baumgartner: Partitioning vector spaces, J. Comb. Theory, Ser. A. 18 (1975),231–233.

    Google Scholar 

  4. J. Ceder: Finite subsets and countable decompositions of Euclidean spaces, Rev. Roumaine Math. Pures Appl. 14 (1969), 1247–1251.

    Google Scholar 

  5. Z. Daróczy: Jelentés az 1965. évi Schweitzer Miklós matematikai emlékversenyről, Matematikai Lapok 17 (1966), 344–366. (in Hungarian)

    Google Scholar 

  6. R. O. Davies: Covering the plane with denumerably many curves, Bull. London Math. Soc. 38 (1963), 343–348.

    Google Scholar 

  7. R. O. Davies: Partitioning the plane into denumerably many sets without repeated distances, Proc. Camb. Phil. Soc. 72 (1972), 179–183.

    Google Scholar 

  8. R. O. Davies: Covering the space with denumerably many curves, Bull. London Math. Soc. 6 (1974), 189–190.

    Google Scholar 

  9. P. Erdős: Some remarks on set theory, Proc. Amer. Math. Soc. 1 (1950), 127–141.

    Google Scholar 

  10. P. Erdős: Some remarks on set theory, III, Michigan Mathematical Journal 2 (1953–54), 51–57.

    Google Scholar 

  11. P. Erdős: Some remarks on set theory IV, Mich. Math. 2 (1953–54), 169–173.

    Google Scholar 

  12. P. Erdős: Hilbert terben levő ponthalmazok néhány geometriai és halmazelméleti tulajdonságáról, Matematikai Lapok 19 (1968), 255–258 (Geometrical and set theoretical properties of subsets of Hilbert spaces, in Hungarian).

    Google Scholar 

  13. P. Erdős: Set-theoretic, measure-theoretic, combinatorial, and number-theoretic problems concerning point sets in Euclidean space, Real Anal. Exchange 4 (1978–79), 113–138.

    Google Scholar 

  14. P. Erdős: My Scottish Book “Problems”, in: The Scottish Book, Mathematics from the Scottish Café (ed. R.D.Mauldin), Birkhauser, 1981,35–43.

    Google Scholar 

  15. P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, E. G. Straus: Euclidean Ramsey theorems II, in: Infinite and Finite Sets, Keszthely (Hungary), 1973, ColI. Math. Soc. J. Bolyai 10, 529–557.

    Google Scholar 

  16. P. Erdős, A. Hajnal: Some remarks on set theory, VIII, Michigan Mathematical Journal 7 (1960), 187–191.

    Google Scholar 

  17. P. Erdős, S. Jackson, R. D. Mauldin: On partitions of lines and space, Fund. Math. 145 (1994), 101–119.

    Google Scholar 

  18. P. Erdős, S. Kakutani: On non-denumerable graphs, Bull. Amer. Math. Soc., 49 (1943), 457–461.

    Article  MathSciNet  Google Scholar 

  19. P. Erdős, P. Komjáth: Countable decompositions of R 2 and R 3, Discrete and Computational Geometry 5 (1990), 325–331.

    Google Scholar 

  20. C. Freiling: Axioms of symmetry: Throwing darts at the real number line, Journal of Symbolic Logic 51 (1986), 190–200.

    Google Scholar 

  21. H. Friedman: A consistent Fubini-Tonelli theorem for nonmeasurable functions, Illinois Journal of Mathematics, 24 (1980), 390–395.

    MathSciNet  MATH  Google Scholar 

  22. S. H. Hechler: Directed graphs over topological spaces: some set theoretical aspects, Israel Journal of Mathematics 11 (1972), 231–248.

    Google Scholar 

  23. P. Komjáth: Tetrahedron free decomposition of R 3, Bull. London Math. Soc. 23 (1991), 116–120.

    Google Scholar 

  24. P. Komjáth: The master coloring, Comptes Rendus Mathématiques de l’Academie des sciences, la Société royale du Canada, 14(1992), 181–182.

    Google Scholar 

  25. P. Komjáth: Set theoretic constructions in Euclidean spaces, in : New trends in Discrete and Computational Geometry, (J. Pach, ed.), Springer, Algorithms and Combinatorics, 10 (1993), 303–325.

    Google Scholar 

  26. P. Komjáth: A decomposition theorem for R n, Proc. Amer. Math. Soc. 120 (1994), 921–927.

    Google Scholar 

  27. P. Komjáth: Partitions of vector spaces, Periodica Math. Hung. 28 (1994), 187–193.

    Google Scholar 

  28. P. Komjáth: A note on set mappings with meager images, Studia Math. Hung., accepted.

    Google Scholar 

  29. K. Kunen: Partitioning Euclidean space, Math. Proc. Camb. Phil. Soc. 102, (1987), 379–383.

    Google Scholar 

  30. L. Newelski, J. Pawlikowski, W. Seredyńiski: Infinite free set for small measure set mappings, Proc. Amer. Math. Soc. 100 (1987), 335–339.

    Google Scholar 

  31. J. H. Schmerl: Partitioning Euclidean space, Discrete and Computational Geometry

    Google Scholar 

  32. J. H. Schmerl: Triangle-free partitions of Euclidean space, to appear.

    Google Scholar 

  33. J. H. Schmerl: Countable partitions of Euclidean space, to appear.

    Google Scholar 

  34. W. Sierpińiski: Sur un théorèms équivalent à l’hypothese du continu, Bull. Int. Acad. Sci. Cracovie A (1919), 1–3.

    Google Scholar 

  35. W. Sierpińiski: Hypothèse du continu, Warsaw, 1934.

    Google Scholar 

  36. J. C. Simms: Sierpińiski’s theorem, Simon Stevin 65 (1991), 69–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Komjáth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Komjáth, P. (2013). Set Theory: Geometric and Real. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős II. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7254-4_24

Download citation

Publish with us

Policies and ethics