Skip to main content

Hereditary and Monotone Properties of Graphs

  • Chapter
  • First Online:
The Mathematics of Paul Erdős II
  • 1959 Accesses

Summary

Given a hereditary graph property \(\mathcal{P}\) let \({\mathcal{P}}^{n}\) be the set of those graphs in \(\mathcal{P}\) on the vertex set {1, , n}. Define the constant c n by \(\vert {\mathcal{P}}^{n}\vert = {2}^{c_{n}\left ({ n \atop 2} \right )}\). We show that the limit lim n c n always exists and equals 1 − 1 ∕ r, where r is a positive integer which can be described explicitly in terms of \(\mathcal{P}\). This result, obtained independently by Alekseev, extends considerably one of Erdős, Frankl and Rödl concerning principal monotone properties and one of Prömel and Steger concerning principal hereditary properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.E. Alekseev, Hereditary classes and coding of graphs, Probl. Cybern. 39 (1982) 151–164 (in Russian).

    Google Scholar 

  2. V.E. Alekseev, On the entropy values of hereditary classes of graphs, Discrete Math. Appl. 3 (1993) 191–199.

    Google Scholar 

  3. B. Bollobás, Extremal Graph Theory, Academic Press (1978), xx+488pp.

    Google Scholar 

  4. B. Bollobás, Hereditary and monotone properties of combinatorial structures, in Surveys in combinatorics 2007 (A. Hilton and J. Talbot, eds), London Mathematical Society Lecture Note Series 346, Cambridge University Press (2007), pp. 1–39.

    Google Scholar 

  5. B. Bollobás and P. Erdős, On the structure of edge graphs, Bull. London Math. Soc. 5 (1973) 317–321.

    Google Scholar 

  6. B. Bollobás, P. Erdős and M. Simonovits, On the structure of edge graphs II, J. London Math. Soc. 12(2) (1976) 219–224.

    Google Scholar 

  7. B. Bollobás and A. Thomason, Projections of bodies and hereditary properties of hypergraphs, J. London Math. Soc. 27 (1995) 417–424.

    Google Scholar 

  8. B. Bollobás and A. Thomason, The structure of hereditary properties and colourings of random graphs, Combinatorica 20 (2000) 173–202.

    Google Scholar 

  9. V. Chvátal and E. Szemerédi, On the Erdős-Stone theorem, J. London Math. Soc. 23 (1981) 207–214.

    Google Scholar 

  10. P. Erdős, P. Frankl and V. Rödl, The asymptotic enumeration of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs and Combinatorics 2 (1986), 113–121.

    Google Scholar 

  11. P. Erdős, D.J. Kleitman and B.L. Rothschild, Asymptotic enumeration of K n -free graphs, in International Coll. Comb., Atti dei Convegni Lincei (Rome) 17 (1976) 3–17.

    Google Scholar 

  12. P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087–1091.

    Google Scholar 

  13. D.J. Kleitman and B.L. Rothschild, Asymptotic enumeration of partial orders on a finite set, Trans. Amer. Math. Soc. 205 (1975) (205–220).

    Google Scholar 

  14. Ph.G. Kolaitis, H.J. Prömel and B.L. Rothschild, K l + 1-free graphs: asymptotic structure and a 0-1-law, Trans. Amer. Math. Soc. 303 (1987) 637–671.

    Google Scholar 

  15. E. Marchant and A. Thomason, Extremal graphs and multigraphs with two weighted colours, in “Fete of Combinatorics and Computer Science” Bolyai Soc. Math. Stud., 20 (2010), 239–286.

    Google Scholar 

  16. E. Marchant and A. Thomason, The structure of hereditary properties and 2-coloured multigraphs, Combinatorica 31 (2011), 85–93.

    Google Scholar 

  17. H.J. Prömel and A. Steger, Excluding induced subgraphs: quadrilaterals, Random Structures and Algorithms 2 (1991) 55–71.

    Google Scholar 

  18. H.J. Prömel and A. Steger, Excluding induced subgraphs II: Extremal graphs, Discrete Applied Mathematics, 44 (1993) 283–294.

    Article  MathSciNet  MATH  Google Scholar 

  19. H.J. Prömel and A. Steger, Excluding induced subgraphs III: a general asymptotic, Random Structures and Algorithms 3 (1992) 19–31.

    Google Scholar 

  20. H.J. Prömel and A. Steger, The asymptotic structure of H-free graphs, in Graph Structure Theory (N. Robertson and P. Seymour, eds), Contemporary Mathematics 147, Amer. Math. Soc., Providence, 1993, pp. 167–178.

    Google Scholar 

  21. H.J. Prömel and A. Steger, Almost all Berge graphs are perfect, Combinatorics, Probability and Computing 1 (1992) 53–79.

    Google Scholar 

  22. F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30(2) (1929) 264–286.

    Google Scholar 

  23. V. Rödl (personal communication).

    Google Scholar 

  24. V. Rödl, Universality of graphs with uniformly distributed edges, Discrete Mathematics 59 (1986) 125–134.

    Google Scholar 

  25. D. Saxton and A. Thomason, Hypergraph containers (preprint).

    Google Scholar 

  26. E.R. Scheinerman and J. Zito, On the size of hereditary classes of graphs, J. Combinatorial Theory (B), 61 (1994) 16–39.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Szemerédi, Regular partitions of graphs, in Proc. Colloque Inter. CNRS (J.-C. Bermond, J.-C. Fournier, M. las Vergnas, D. Sotteau, eds), (1978).

    Google Scholar 

  28. A. Thomason, Graphs, colours, weights and hereditary properties, in ‘Surveys in Combinatorics, 2011 (R. Chapman ed.), LMS Lecture Note Series 392 (2011), 333–364.

    Google Scholar 

  29. P. Turán, On an extremal problem in graph theory (in Hungarian), Mat. Fiz. Lapok 48 (1941) 436–452.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Bollobás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bollobás, B., Thomason, A. (2013). Hereditary and Monotone Properties of Graphs. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős II. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7254-4_6

Download citation

Publish with us

Policies and ethics