Skip to main content

The Origins of the Theory of Random Graphs

  • Chapter
  • First Online:
The Mathematics of Paul Erdős I

Abstract

The origins of the theory of random graphs are easy to pin down. Undoubtedly one should look at a sequence of eight papers co-authored by two great mathematicians: Paul Erdős and Alfred Rényi, published between 1959 and 1968:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Achlioptas and A. Naor, The two possible values of the chromatic number of a random graph, Ann. of Math. 162(2) (2005), no. 3, 1335–1351.

    Google Scholar 

  2. M. Ajtai, J. Komlós and E. Szemerédi, Topological complete subgraphs in random graphs, Studia. Sci. Math. Hungar. 14 (1979), 293–297.

    MathSciNet  MATH  Google Scholar 

  3. N. Alon and J. Spencer, The Probabilistic Method, 1992, Wiley.

    Google Scholar 

  4. N. Alon and R. Yuster, Threshold functions forH-factors, Combinatorics, Probability and Computing 2 (1993), 137–144.

    Article  MathSciNet  MATH  Google Scholar 

  5. A.D. Barbour, Poisson convergence and random graphs, Math. Proc. Cambr. Phil. Soc. 92 (1982), 349–359.

    Article  MathSciNet  MATH  Google Scholar 

  6. A.D. Barbour, S. Janson, M. Karoński and A. Ruciński, Small cliques in random graphs, Random Structures Alg. 1 (1990), 403–434.

    Article  MATH  Google Scholar 

  7. A.D. Barbour, M. Karoński and A.Ruciński, A central limit theorem for decomposable random variables with applications to random graphs, J. Comb. Th.-B 47 (1989), 125–145.

    Article  MATH  Google Scholar 

  8. P. Billingsley, Probability and Measure, 1979, Wiley.

    Google Scholar 

  9. B. Bollobás, Threshold functions for small subgraphs, Math. Proc. Cambr. Phil. Soc. 90 (1981), 197–206.

    Article  MATH  Google Scholar 

  10. B. Bollobás, Vertices of given degree in a random graph, J. Graph Theory 6 (1982), 147–155.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Bollobás, Distinguishing vertices of random graphs, Annals Discrete Math. 13 (1982), 33–50.

    MATH  Google Scholar 

  12. B. Bollobás, Almost all regular graphs are Hamiltonian, Europ. J. Combinatorics 4 (1983), 97–106.

    MATH  Google Scholar 

  13. B. Bollobás, The evolution of random graphs, Trans. Amer. Math. Soc. 286 (1984), 257–274.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Bollobás, Random Graphs, Academic Press, London, 1985.

    MATH  Google Scholar 

  15. B. Bollobás, The chromatic number of random graphs, Combinatorica 8 (1988), 49–55.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Bollobás and P. Erdős, Cliques in random graphs, Math. Proc. Cambr. Phil. Soc. 80 (1976), 419–427.

    Article  MATH  Google Scholar 

  17. B. Bollobás and A. Frieze, On matchings and hamiltonian cycles in random graphs, in: Random Graphs ’83, Annals of Discrete Mathematics 28 (1985), 1–5.

    Google Scholar 

  18. B. Bollobás and A. Thomason, Random graphs of small order, Annals of Discrete Math. 28 (1985), 47–98.

    Google Scholar 

  19. B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1987), 35–38.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Bollobás and J.C. Wierman, Subgraph counts and containment probabilities of balanced and unbalanced subgraphs in a large random graph, in: Graph Theory and Its Applications: East and West (Proc. 1st China-USA Intern. Graph Theory Conf.), Eds. Capobianco et al., Annals of the New York Academy of Sciences 576 (1989), 63–70.

    Google Scholar 

  21. R. DeMarco and J. Kahn, Tight upper tail bounds for cliques 41 (2012), 469487.

    Google Scholar 

  22. [DFl] A. Dudek and A. Frieze, Loose Hamilton Cycles in Random k-Uniform Hypergraphs Electronic Journal of Combinatorics, 18 (2011) P48.

    Google Scholar 

  23. A. Dudek and A. Frieze, Tight Hamilton Cycles in Random Uniform Hypergraphs, Random Structures Alg., to appear.

    Google Scholar 

  24. A. Dudek, A. Frieze, P.-S. Loh and S. Speiss, Optimal divisibility conditions for loose Hamilton cycles in random hypergraphs, Electronic Journal of Combinatorics 19 (2012), P44.

    MathSciNet  Google Scholar 

  25. P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.

    Article  MathSciNet  Google Scholar 

  26. P. Erdős and A. Rényi, On random graphs I, Publ. Math. Debrecen 6 (1959), 290–297.

    MathSciNet  Google Scholar 

  27. P. Erdős and A. Rényi On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 5 (1960), 17–61.

    Google Scholar 

  28. P. Erdős and A. Rényi, On the evolution of random graphs, Bull. Inst. Internat. Statist. 38 (1961), 343–347.

    MathSciNet  Google Scholar 

  29. P. Erdős and A. Rényi, On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hungar. 12 (1961), 261–267.

    Article  MathSciNet  Google Scholar 

  30. P. Erdős and A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hung. 14 (1963), 295–315.

    Article  Google Scholar 

  31. P. Erdős and A. Rényi, On random matrices, Publ. Math. Inst. Hung. Acad. Sci. 8 (1964), 455–461.

    Google Scholar 

  32. P. Erdős and A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta Math. Acad. Sci. Hung. 17 (1966), 359–368.

    Article  Google Scholar 

  33. P. Erdős and A. Rényi On random matrices II, Studia Sci. Math. Hung. 3 (1968), 459–464.

    Google Scholar 

  34. A. Frieze Loose Hamilton Cycles in Random 3-Uniform Hypergraphs Electronic Journal of Combinatorics 17 (2010) N28

    Google Scholar 

  35. A. Frieze and S. Janson, Perfect Matchings in Random s-Uniform Hypergraphs Random Structures and Algorithms 7 (1995) 41–57.

    Article  MathSciNet  MATH  Google Scholar 

  36. E. N. Gilbert, Random graphs, Annals of Mathematical Statistics 30 (1959), 1141–1144.

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Godehardt and J. Steinebach, On a lemma of P. Erdős and A. Rényi about random graphs, Publ. Math. 28 (1981), 271–273.

    MathSciNet  MATH  Google Scholar 

  38. G.R. Grimmett and C.J.H. McDiarmid, On colouring random graphs, Math. Proc. Cambr. Phil. Soc. 77 (1975), 313–324.

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Janson, Poisson approximation for large deviations, Random Structures & Algorithms 1 (1990), 221–229.

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Janson, D.E. Knuth, T. Łuczak and B. Pittel, The birth of the giant component, Random Structures & Algorithms 4 (1993), 233–358.

    Article  MATH  Google Scholar 

  41. S. Janson and J. Kratochvil, Proportional graphs, Random Structures & Algorithms 2 (1991), 209–224.

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Janson, T. Łuczak and A.Ruciński, An exponential bound for the probability of nonexistence of a specified subgraph of a random graph, in: Proceedings of Random Graphs ’87, Wiley, Chichester, 1990, 73–87.

    Google Scholar 

  43. S. Janson, T. Łuczak and A. Ruciński, Random Graphs Wiley, (2000).

    Google Scholar 

  44. S. Janson, K. Oleszkiewicz and A. Ruciński, Upper tails for subgraph counts in random graphs, Israel J. Math. 141 (2004), 61–92.

    Article  MathSciNet  Google Scholar 

  45. S. Janson and J. Spencer, Probabilistic constructions of proportional graphs, Random Structures & Algorithms 3 (1992), 127–137.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. Johansson, J. Kahn and V. Vu, Factors in random graphs, Random Structures and Algorithms 33 (2008), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Karoński, On the number of k-trees in a random graph, Prob. Math. Stat., 2 (1982), 197–205.

    MATH  Google Scholar 

  48. M. Karoński and A. Ruciński, On the number of strictly balanced subgraphs of a random graph, in: Graph Theory, Łagów 1981, Lecture Notes in Math. 1018, Springer-Verlag, 1983, 79–83.

    Google Scholar 

  49. J. Kärrman, Existence of proportional graphs, J. Graph Theory 17 (1993), 207–220.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. H. Kim, Perfect matchings in random uniform hypergraphs, Random Struct. Algorithms 23(2) (2003), 111–132

    Article  MATH  Google Scholar 

  51. V.F. Kolchin, On the limit behavior of a random graph near the critical point, Theory Probability Its Appl. 31 (1986), 439–451.

    Article  MathSciNet  Google Scholar 

  52. M. Krivelevich, Perfect fractional matchings in random hypergraphs, Random Structures and Algorithms 9 (1996), 317334.

    Article  MathSciNet  Google Scholar 

  53. M. Krivelevich, Triangle factors in random graphs, Combinatorics, Probability and Computing 6 (1997), 337347.

    MathSciNet  Google Scholar 

  54. J. Komlós and E. Szemerédi, Limit distributions for the existence of Hamilton cycles, Discrete Math. 43 (1983), 55–63.

    Article  MathSciNet  MATH  Google Scholar 

  55. A.D. Korshunov, A solution of a problem of Erdős and Rényi on Hamilton cycles in non-oriented graphs, Metody Diskr. Anal. 31 (1977), 17–56.

    MATH  Google Scholar 

  56. T. Łuczak, The automorphism group of random graphs with a given number of edges, Math. Proc. Camb. Phil. Soc. 104 (1988), 441–449.

    Article  MATH  Google Scholar 

  57. T. Łuczak, On the chromatic number of sparse random graphs, Combinatorica 10 (1990), 377–385.

    Google Scholar 

  58. T. Łuczak, Component behavior near the critical point of the random graph process, Random Structures & Algorithms 1 (1990), 287–310.

    Article  MathSciNet  MATH  Google Scholar 

  59. T. Łuczak, On the equivalence of two basic models of random graphs, in: Proceedings of Random Graphs ’87, Wiley, Chichester, 1990, 151–157.

    Google Scholar 

  60. T. Łuczak, Size and connectivity of the k-core of a random graph, Discrete Math. 91 (1991) 61–68.

    Article  MathSciNet  MATH  Google Scholar 

  61. T. Łuczak, A note on the sharp concentration of the chromatic number of a random graph, Combinatorica 11 (1991), 295–297.

    Article  MathSciNet  MATH  Google Scholar 

  62. T. Łuczak, The phase transition in a random graph, Combinatorics, Paul Erdős is Eighty, vol.2 (Dezsä Miklós, Vera T.Sós, Tamás Szõnyi, eds.), Budapest, 1996, Bolyai Society Mathematical Studies 2, 399–422.

    Google Scholar 

  63. T. Łuczak and J.C. Wierman, The chromatic number of random graphs at the double-jump threshold, Combinatorica 9 (1989), 39–49.

    Article  MathSciNet  MATH  Google Scholar 

  64. T. Łuczak, B. Pittel and J.C. Wierman, The structure of a random graph at the double-jump threshold, Trans. Am. Math. Soc. 341 (1994), 721–728.

    MATH  Google Scholar 

  65. T. Łuczak and A. Ruciński, Tree-matchings in random graph processes, SIAM J. Discr. Math 4 (1991), 107–120.

    Article  MATH  Google Scholar 

  66. D. W. Matula, The employee party problem, Notices Amer. Math. Soc. 19 (1972), A-382

    Google Scholar 

  67. D. W. Matula, The largest clique size in a random graph, Tech. Rep. Dept. Comput. Sci., Southern Methodist Univ., Dallas, 1976.

    Google Scholar 

  68. D. W. Matula and L. Kucera, An expose-and-merge algorithm and the chromatic number of a random graph, in: Random Graphs ’87 (J. Jaworski, M. Karoński and A. Ruciński, eds.), John Wiley & Sons, New York, 1990, 175–188.

    Google Scholar 

  69. L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976), 359–364.

    Article  MathSciNet  MATH  Google Scholar 

  70. A. Ruciński, When are small subgraphs of a random graph normally distributed?, Prob. Th. Rel. Fields 78 (1988), 1–10.

    Article  MATH  Google Scholar 

  71. A. Ruciński, Small subgraphs of random graphs: a survey, in: Proceedings of Random Graphs ’87, Wiley, Chichester, 1990, 283–303.

    MATH  Google Scholar 

  72. A. Ruciński, Matching and covering the vertices of a random graph by copies of a given graph, Discrete Math. 105 (1992), 185–197.

    Article  MathSciNet  MATH  Google Scholar 

  73. A. Ruciński and A. Vince, Balanced graphs and the problem of subgraphs of random graphs, Congres. Numerantium 49 (1985), 181–190.

    Google Scholar 

  74. K. Schürger, Limit theorems for complete subgraphs of random graphs, Period. Math. Hungar. 10 (1979), 47–53.

    Article  MathSciNet  MATH  Google Scholar 

  75. J. Schmidt and E. Shamir, A threshold for perfect matchings in random d-pure hypergraphs, Discrete Math. 45 (1983), 287–295.

    Article  MathSciNet  MATH  Google Scholar 

  76. E. Shamir and J. Spencer, Sharp concentration of the chromatic number of random graphsG n, p , Combinatorica 7 (1987), 121–129.

    Article  MathSciNet  MATH  Google Scholar 

  77. E. Shamir and E. Upfal, On factors in random graphs, Israel J. Math.39 (1981), 296–302.

    Article  MathSciNet  MATH  Google Scholar 

  78. E. M. Wright, Asymmetric and symmetric graphs, Glasgow Math. J. 15 (1974), 69–73.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Tomasz Łuczak for his invaluable help in updating this paper. We are also grateful to Steve Butler for turning our obsolete amstex file from 1995 into a modern latex file.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Karoński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karoński, M., Ruciński, A. (2013). The Origins of the Theory of Random Graphs. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős I. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7258-2_23

Download citation

Publish with us

Policies and ethics