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Acknowledgement

When the kind invitation of Ron Graham and Jaroslav Nesetril, to write in honour of
Paul Erdős about aspects of his work, reached us, our first reaction was to follow it
with great pleasure. Our second reaction was not as clear: Which one among the many
subjects in mathematics, to which he has made fundamental contributions, should we
choose?

Finally we just followed the most natural idea to write about an area which just had
started to fascinate us: Density Theory for Integer Sequences.

More specifically we add here to the classical theory of primitive sequences and their
sets of multiples results for cross–primitive sequences, a concept, which we introduce.
We consider both, density properties for finite and infinite sequences. In the course of
these investigations we naturally come across the main theorems in the classical theory
and the predominance of results due to Paul Erdős becomes apparent. Several times
he had exactly proved the theorems we wanted to prove! Many of them belong to his
earliest contribution to mathematics in his early twenties.

Quite luckily our random approach led us to the perhaps most formidable period in
Erdős’ work. It reminds us about a statement, which K. Reidemeister ([18], ch. 8) made
about Carl Friedrich Gauss:

“ . . . . Aber das Epochale ist doch die geniale Entdeckung des Jünglings: die Zahlentheorie.”
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1. Classical results

At first we set up our notation.

N denotes the set of positive integers and P = {p1, p2, . . . } = {2, 3, 5, . . . } denotes
the set of all primes. For the number u, v ∈ N we write u|v , if u divides v . Further
(u, v) stands for the largest common divisor and < u, v > denotes the smallest
common multiple of u and v .

In case (u, v) = 1 u and v are said to be relatively prime (or coprimes). The greatest
prime factor of u is written as p+(u) . For i ≤ j [i, j] equals {i, i + 1, . . . , j}
and (i, j] equals {i + 1, . . . , i} . Any set A ⊂ N can also be viewed as an increasing
sequence (ai)

∞
i=1 , where A = {ai : i ∈ N} , and vice versa. We reserve the letter A for

such sets or sequences. It is convenient to use the abbreviations A(x) = A∩ [1, x] and
|B| for the cardinality of any set B . We also use φ(x, y) = |

{

n ∈ [1, x] : P t(n) > y
}

| .

The lower and upper asymptotic density of A are

d A = lim inf
x→∞

|A(x)|

x
and d A = lim sup

x→∞

|A(x)|

x
. (1.1)

If d A = d A , then A possesses the asymptotic density d A = d A = d A . Related
quantities are

δ A = lim inf
x→∞

1

log x

∑

ai≤x

1

ai

and δ A = lim sup
x→∞

1

log x

∑

ai≤x

1

ai

, (1.2)

the logarithmic lower and upper density of A . If δ A = δ A , then A possesses
logarithmic density δ A = δ A = δ A .

In the first half of the century there was noticeable interest in the study of density
properties of the set of multiples

M(A) = {m ∈ N : for some a ∈ A a|m} (1.3)

of infinite sequences A of positive integers. This naturally relates to the study of
primitive sequences.

A sequence A = (ai)
∞
i=1 is primitive, if

ai ∤ aj for i 6= j . (1.4)

One readily verifies that every A contains a unique subsequence P (A) which is
primitive and satisfies

M
(

P (A)
)

= M(A) . (1.5)
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Actually,

P (A) = {a ∈ A :6 ∃ b ∈ A, b 6= a, and b|a} . (1.6)

One question of Chowla (see [2]) opened the subject: Does d M(A) exist for every
A ⊂ N ?

This can readily be shown to be the case for all finite A , however, was open for a
longer time and finally settled in the negative by Besicovitch [2] in the infinite case.

Theorem I. (Besicovitch [2])

For every ε > 0 there is an A ⊂ N with

d M(A) ≥
1

2
and d M(A) ≤ ε .

Actually, the A’s are constructed as unions of suitable intervals. The primitive sequence
P (A) generating the M(A) of Theorem I gives the next famous result.

Theorem II. (Besicovitch [2])

For every ε > 0 there is primitive sequence A′ with

d A′ ≥
1

2
− ε and d A′ ≤ ε .

This shows that a question of Davenport and Erdős (see [7], [13]), whether every
primitive sequence has asymptotic density 0 , has a negative answer.

We derive next an upper bound on d A because it is instructive and beautiful. For
any primitive A = {a1, . . . , aα} ⊂ [1, 2n] let di denote the greatest odd devisor of
ai . Then necessarily d1, . . . , dα are all distinct and hence

|A| = α ≤ n . (1.7)

Theorem III. (Behrend [3])

For every primitive A d A ≤ 1
2 .

Example IV (Everybody)

{n + 1, . . . , 2n} is primitive and has density 1
2 .

This simple fact is very relevant in the analysis of infinite primitive sequences.

Now Paul Erdős enters the scene.
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Theorem V. (Erdős [5])

For a primitive A 6⊃ {1}

∞
∑

i=1

1

ai log ai

< ∞ .

It is an open problem of Erdős whether
∞
∑

i=1

1

ai log ai

≤
∞
∑

i=1

1

pi log pi

.

By Abel summation it can be shown that for any set B ⊂ N

0 ≤ d B ≤ δ B ≤ δ B ≤ d B ≤ 1 . (1.8)

Since
1

log n

∑

N<ai≤n

1

ai

≤
∑

N<ai≤n

1

ai log ai

, by Theorem V δ A = 0 for primitive A .

Also by (1.8) d A = 0 . We state this result.

Theorem VI. (Erdős [5])

For every primitive sequence A d A = δA = 0 or (equivalently)

1

log n

∑

ai≤n

1

ai

= o(1) as n → ∞ . (1.9)

Logarithmic density has turned out to be an appropriate measure!

Also, what can be said about the speed in (1.9)?

Theorem VII. (Behrend [3])

There is a constant γ such that for every primitive sequence A

1

log n

∑

ai≤n

1

ai

≤ γ
1

(log log n)
1

2

for n ≥ 3 . (1.10)

In the proof the general case is reduced to A’s consisting entirely of square–free
integers and their analysis is based on Sperner’s Lemma [1]! This gave a strong impetus
also to combinatorial extremal theory starting with [12] and continuing with [24], . . . , [30]
and many, many others.

Theorem VII is best possible in the sense that γ cannot be replaced o(n) .
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Theorem VIII. (S. Pillai [8])

There exists a positive constant c , such that to every x ≥ 3 corresponds a primitive
set Ax with

1

log x

∑

ai≤x

1

ai

>
c

(log log x)
1

2

.

Subsequently Erdős, Sárközy, and Szemerédi [20] showed that c can be choosen as

(2π)−
1

2 − ε for any ε > 0 and that this is best possible.

The last three theorems concern in essence only finite primitive sequences. Related to
infinite primitive sequences in the true sense is

Theorem IX. (Erdős, Sárközy, Szemerédi [21])

For every infinite primitive sequence A

∑

ai≤x

1

ai

= o

(

log x

(log log x)
1

2

)

and this bound is best possible.

We draw attention also to a survey paper of Erdős, Sárközy, and Szemerédi [22] and
to a related paper of Pomerance and Sárközy [23].

Concerning d A there is the following improvement of Theorem III.

Theorem X. (Erdős [14])

Let A be an infinite primitive sequence, then for every a ∈ A of the form a =
2u(2v + 1) ≤ n ; u, v ≥ 0 ,

|A(n)| ≤ n −

⌊

1

2
n

⌋

−

⌊

1

2

(

n

3u(2v + 1)
− 1

)⌋

.

Hence, d A < 1
2 .

After Besicovitch’s negative answer to Chowla’s question, it is natural to adress the
next question:

Under which conditions on A does d M(A) or d M(A) or δ M(A) exist?

Davenport/Erdős and Erdős answered all these questions:

We derive here the simplest and most transparent result, Theorem XI below, in order
to explain the important role of a quantity, which we consider to be a density concept
for sets of multiples and denote as µ .

Since A is fixed, we write M for M(A) . Furhter we denote by Mm = Mm(A)
the set of multiples of the first m elements of A , namely a1, a2, . . . , am . Mm can
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be represented as the union of a finite number of congruence classes, and therefore
possesses asymptotic density. If we denote by M (i)(n) the natural numbers, not
exceeding n , which are divisible by ai but not diversible by any one of a1, . . . , ai−1 ,
then we have

Mm(n) =

m
.

⋃

i=1

M (i)(n) . (1.11)

By inclusion–exclusion for every i = 1, 2, 3, . . . ,

|M (i)(n)| =

⌊

n

ai

⌋

−
∑

j<i

⌊

n

< ai, aj >

⌋

+
∑

k<j<i

⌊

n

< ak, ai, aj >

⌋

− . . .

and

d M (i) = lim
n→∞

|M (i)(n)|

n
=

1

ai

−
∑

j<i

1

< aj , ai >
+ . . . .

Therefore by (1.11)

d Mm =
m

∑

i=1

d M (i) . (1.12)

Since 0 <

m
∑

i=1

d M (i) < 1 and d M (i) ≥ 0 , lim
m→∞

d Mm =

∞
∑

i=1

d M (i) exists.

We define now the “density” µ by

µ A = lim
m→∞

d Mm(A), A ⊂ N . (1.13)

Since Mm(A) ⊂ M(A) , we see immediately that

µ A ≤ d M(A) . (1.14)

Suppose now that

∞
∑

i=1

a−1
i < ∞ . Then d M(A) ≤ d Mm(A) +

∞
∑

i=m+1

1

ai

and thus

d M(A) ≤ µ A ≤ d M(A) .

Theorem XI. ([17])

If

∞
∑

i=1

a−1
i < ∞ , then dM(A) exists and equals µA .

Here are the high–lights.
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Theorem * XII. (Davenport/Erdős [7], also [13])

For any A ⊂ N M(A) has logarithmic density and

δM(A) = d M(A) = µA .

Theorem * XIII. (Erdős [11])

A necessary and sufficient condition for d M(A) to exists is

lim
ε→0

lim sup
n→∞

1

n

∑

n1−ε<ai≤n

|M (i)(n)| = 0 . (1.15)

Eventhough condition (1.15) looks complicated, it yields a useful sufficient condition.

Theorem * XIV. (Erdős [11])

If A ⊂ N satisfies for some constant c |A(n)| ≤ cn
log n

for n ≥ 2 , then dM(A)
exists.

The case A = P is included here.

The result is best possible in the following sense.

Theorem XV. (Erdős [12])

For any monotonically increasing function Ψ : N → R+ with lim
n→∞

Ψ(n) = ∞ there

exsists an A ⊂ N such that

|A(n)| ≤ const
n Ψ(n)

log n
for large n,

but dM(A) does not exist.

We present now two further results with many applications.

The first of them was probably motivated by Example IV. It shows how the set of
multiples of certain intervals behaves in density. This is the key idea in Besicovitch’s
construction [2]. Erdős improved the length of the intervals.

Theorem * XVI. (Erdős [5])

The intervals (T 1−ε, T ] ⊂ N satisfy lim
ε→0

T→∞

dM
(

(T 1−ε, T ]
)

= 0 .

The second result is the famous Behrend Lemma in a dual formulation, that is, for
X ⊂ N we use M(X) instead of N r M(X) .
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Lemma XVII *. (Behrend [10])

Let A,B ⊂ N be finite, then

dM(A) · dM(B) ≤ d
(

M(A) ∩ M(B)
)

.

Moreover, equality holds exactly if the primitive sets P (A) and P (B) satisfy (a, b) =
1 for all a ∈ P (A), b ∈ P (B) .

Finally there are also several papers concerning the growth of φ(x, y) ([15]). We use
later only the following result.

Theorem XVIII *. (Chowla and Vijayaraghavan [15])

lim
x→∞

φ(x, xθ)

x
= log

1

θ
, for

1

2
≤ θ < 1.

Remark:

We apologize for not including in our sketch several results of basic nature such as
Rogers inequality [17] and others. Our selection is guided by our present research
interest. The reader may consult the books by Halberstam and Roth [17] and Hall and
Tenenbaum [19].

Results marked with a star are applied in subsequent sections.

2. New results

We introduce a seemingly basic and new concept.

The pair of sets (or sequences) (A,B) with A,B ⊂ N is called cross–primitive, if

a ∤ b and b ∤ a for all a ∈ A, b ∈ B . (2.1)

It is convenient to denote the set of all cross–primitive pairs (A,B) with A,B ⊂
N(x) (resp. N ) by Cross(x) (resp. Cross(∞) ). We are again interested in density
properties.

We begin with the finite case and define

c(x) = max
(A,B)∈Cross(x)

|A| · |B|

x2
.

9



Theorem 1.

For all x ∈ N c(x) < 1
4 and

lim
x→∞

c(x) =
1

4
.

Remark: As analogue for a primitive sequence see the simple Example IV and (1.7).
We believe that our construction is optimal for large x . Erdős thinks that the deviation

of max
(A,B)∈Cross(x)

|A||B| from x2

4 is of the order xα for some α > 1 .

The infinite case shows more complex behaviour and that’s the case where also several
classical results on primitive sequences are used.

Theorem 2.

max
(A,B)∈Cross(∞)

d A · d B =
1

16
.

The maximum is assumed for a pair with densities.

One auxiliary result for proving this Theorem deserves special attention. It is an infinite
form of Behrend’s Lemma XVII, but by no means an easy extension. On the opposite,
it involves the essence of the Davenport/Erdős Theorem XIV and expresses it in an
elegant way.

Lemma 1. For arbitrary A,B ⊂ N

d M(A) · d M(B) ≤ d
(

M(A) ∩ M(B)
)

.

We use another auxiliary result, which should be known to the experts, but we could
not find stated in the literature.

Lemma 2. For any 0 ≤ λ ≤ 1 , and any q1 ∈ P , 1
q1

≤ λ there exists a set of

primes Q = {q1 < q2 . . . } ⊂ P with

d M(Q) = λ .

Finally, we enter the world of pathologies discovered by Besicovitch.
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Theorem 3.

sup
(A,B)∈Cross(∞)

d A · d B = 1 .

The supremum cannot be assumed: For A = {a1, . . . } d B ≤ 1 − 1
a1

.

Remark: The construction in the proof of this Theorem can be used to show that in
Lemma 1 d cannot be replaced by d .

3. Proof of Theorem 1

Since for (A,B) ∈ Cross(x) A and B must be disjoint and 1 /∈ A∪B , necessarily

|A| + |B| < x and |A|·|B|
x2 < 1

4 . Therefore also c(x) < 1
4 for all x ∈ N .

To complete the proof, we have to construct a sequence (Ax, Bx)∞x=1 with (Ax, Bx) ∈
Cross(x) and

lim
x→∞

|Ax| · |Bx|

x2
=

1

4
. (3.1)

We define for a θ, 1
2 ≤ 0 < 1 , which we adjust later,

Ax = {a ∈ N : x1−θ ≤ a ≤ x and p+(a) ≤ xθ},

Bx = {b ∈ N : b ≤ x and p+(b) > xθ},

and observe that for a θ in the specified interval (Ax, Bx) ∈ Cross(x) . Hence

|Ax| ≥ x − x1−θ − |Bx| . (3.2)

Now Theorem XIII * says that lim
x→∞

|Bx|

x
= log

1

θ
and since x1−θ = o(x)

|Bx| ∼ x log
1

θ
, |Ax| & x(1 − log

1

θ
) . (3.3)

We choose nor θ such that log 1
θ

= 1 − log 1
θ

= 1
2 , that is, θ = e−

1

2 ∼ 0.6065 > 1
2 .

Clearly, (3.3) implies now (3.1).

Remark: A good estimate of |Bx| is possible, because Bx can be partitioned
according to the biggest prime in the decomposition of its members. These biggest
primes are essentially known in magnitude by the Prime Number Theorem. Our first
proof followed this line. Then we learnt about [15].
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4. Proof of Lemma 1

Behrend’s Lemma implies that for every n ∈ N

dM
(

A(n)
)

· dM
(

B(n)
)

≤ d
(

M
(

A(n)
)

∩ M
(

B(n)
))

. (4.1)

Since A(n) , B(n) and thus also A(n) ∩ B(n) are monotonically increasing in n ,
we have

M
(

A(n)
)

∩ M
(

B(n)
)

⊂ M(A) ∩ M(B)

and therefore
d
(

M
(

A(n)
)

∩ M
(

B(n)
))

≤ d
(

M(A) ∩ M(B)
)

. (4.2)

Since d
(

M
(

A(n)
)

∩ M
(

B(n)
))

= d
(

M
(

A(n)
)

∩ M
(

B(n)
))

, (4.1) and (4.2) imply

dM
(

A(n)
)

· dM
(

B(n)
)

≤ d
(

M(A) ∩ M(B)
)

. (4.3)

Now by Theorem XII

lim
n→∞

dM
(

A(n)
)

= dM(A), lim
n→∞

dM
(

B(n)
)

= dM(A)

and therefore
dM(A)dM(B) ≤ d

(

M(A) ∩ M(B)
)

.

5. Proof of Lemma 2

For any Q = {q1 < q2 < . . . } ⊂ P by the Prime Number Theorem (or weaker versions)

|Q ∩ [1, n]| < const ·
n

log n
.

Therefore by Theorem XIV M(Q) possesses asymptotic density and by Theorem XII

dM(Q) = dM(Q) =
∞
∑

i=1

q(i),

where

q(i) =
1

qi

−
∑

j<i

1

qjqi

+
∑

k<j<i

1

qkqjqi

− . . . , (5.1)

because Q ⊂ P . Therefore

∞
∑

i=1

q(i) = 1 −

∞
∏

i=1

(

1 −
1

qi

)
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and now the statement follows from
∑∞

i=1
1
pi

= ∞ , because − log
(

1 − 1
qi

)

> 1
qi

and

for any nullsequence {ai}
∞
i=1 of positive numbers with

∑∞
i=1 ai = ∞ any real number

r > 0 equals
∑∞

j=1 aij for a suitable subsequence {aij}
∞
j=1 .

6. Proof of Theorem 2

We show first that for (A,B) ∈ Cross(∞)

dA · dB ≤
1

16
. (6.1)

We associate with (A,B) the sets

A∗ = M(A) r
(

M(A) ∩ M(B)
)

,

B∗ = M(B) r
(

M(A) ∩ M(B)
)

,

and observe that also (A∗, B∗) ∈ Cross(∞) .

Moreover, we notice that

A ⊂ A∗ and B ⊂ B∗ (6.2)

and that
M(A) ∩ M(B) = M(C), (6.3)

where
C = {< a, b >: a ∈ A, b ∈ B} . (6.4)

By our definitions and properties (6.2) and (6.3) we have also

A ∩ [1, x] ⊂
(

M(A) ∩ [1, x]
)

r
(

M(C) ∩ [1, x]
)

(6.5)

and therefore
|A ∩ [1, x]| ≤ |M(A) ∩ [1, x]| − |M(C) ∩ [1, x]| . (6.6)

Let now (xi)
∞
i=1 be an increasing sequence of positive integers with

lim
i→∞

|M(A) ∩ [1, xi]|

xi

= dM(A) . (6.7)

Then by (6.6) and (6.7)

dA ≤ lim inf
i→∞

|A ∩ [1, xi]|

xi

≤ dM(A) − lim inf
i→∞

|M(C) ∩ [1, xi]|

xi

≤ dM(A) − dM(C) .

(6.8)
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Now we lower bound dM(C) by Lemma 1:

dM(C) = d
(

M(A) ∩ M(B)
)

≥ dM(A) · dM(B)

and conclude that

dA ≤ dM(A) − dM(A) · dM(B) = dM(A)
(

1 − dM(B)
)

. (6.9)

Symmetrically
dB ≤ dM(B)

(

1 − dM(A)
)

(6.10)

and thus finally

dA · dB ≤ dM(A)
(

1 − dM(A)
)

· dM(B)
(

1 − dM(B)
)

≤
1

4
·
1

4
=

1

16
.

We construct now (A,B) ∈ Cross(∞) with

d A · d B =
1

16
. (6.11)

By Lemma 2 there is a Q = {q1 ⊂ q2 . . . } ⊂ P with

d M(Q) =
1

2
and q1 > 2 . (6.12)

Set

A = {a ∈ N : 2 | a and qi ∤ a for all qi ∈ Q},

B = {b ∈ N : 2 ∤ b and b ∈ M(Q)}.

Equivalently

A = M({2}) r
(

M({2}) ∩ M(Q)
)

and B = M(Q) r
(

M({2}) ∩ M(Q)
)

.

Also, it is clear that (A,B) ∈ Cross(∞) and that M({2}) ∩ M(Q) = M(C) , where

C = {2qi : qi ∈ Q} .

Obviously |C∩ [1, n]| ≤ const n
log n

and again by Theorem XIV M(C) has asymptotic

density and is given by the formula dM(C) =

∞
∑

i=1

q
(i)
∗ , where

q
(i)
∗ =

1

2qi

−
∑

j<i

1

2qjqi

+
∑

k<j<i

1

2qkqjqi

· · · =
q(i)

2
.

Hence dM(C) = 1
2

∞
∑

i=1

q(i) =
dM(Q)

2
=

1

4
.
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Therefore

dA = dM({2}) − d(C) =
1

2
−

1

4
=

1

4
,dB = dM(Q) − d(C) =

1

2
−

1

4
=

1

4
,

and (6.11) holds.

7. Proof of Theorem 3

Let us fix δ > 0 , δi > 0 for i ∈ N ;
∞
∑

i=1

δi = δ and 0 < θ < 1 .

By Theorem XVI for a δi > 0 there are positive numbers T (δi) and λ(δi) such that

d M
(

[T 1−λi , T ]
)

< δi for T > T (δi), λi < λ(δi) . (7.1)

We fix arbitrary λi ∈
(

0, λ(δi)
)

for i ∈ N and λ∗ ∈ (0, 1) .

Now (7.1) and the definition of density tell us that for Tj > T (δj) (j = 1, 2, . . . , i)
and S > S(λ∗, T1, T2, . . . , Ti, λ1, . . . , λi, δ1, . . . , δi) (suitable) simultaneously

|M
(

[T
1−λj

j , Tj ]
)

∩ [S1−λ∗

, S]|

S − S1−λ∗
< δj for j ≤ i . (7.2)

Now let R1 be an integer with the properties

R1 > T (δ1) and
1

Rλ1

1

< θ . (7.3)

We fix the interval [R1−λ1

1 , R1] .

Let L1 be an integer with the properties

L1−λ1

1 > R1 and L1−λ1

1 > S(λ1, R1, λ1, δ1) . (7.4)

We choose the interval [L1−λ1

1 , L1] .

Furthermore, we choose R2, L2 such that L1 < R1−λ2

2 , R2 < L1−λ2

2 ,

R1−λ2

2 > max
{

T (δ2), S(λ2, L1, λ1, δ1)
}

, 1

R
λ2

2

< θ and L1−λ2

2 > S(λ2, R1, R2, λ1, λ2, δ1, δ2) .

We fix now intervals [R1−λ2

2 , R2] and [L1−λ2

2 , L2] . Continuing this procedure, for

every i ∈ N we choose Ri, Li such that Li−1 < R1−λi

i < L
(1−λi)

2

i ,

R1−λi

i > max
{

T (δi), S(λi, L1, . . . , Li−1, λ1, . . . , λi−1, δ1, . . . , δi−1)
}

, 1

R
λi
i

< θ ,

and L1−λi

i > S(λi, R1, . . . , Ri, λ1, . . . , λi, δ1, . . . , δi) .
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We fix intervals [R1−λi

i , Ri] and [L1−λi

i , Li] .

By our construction one has for every i ∈ N

|M
(

[R
1−λj

j , Rj ]
)

∩ [L1−λi

i , Li]|

L − L1−λi
< δj for all j ≤ i (7.5)

and analogously

|M
(

[L
1−λj

j , Lj ]
)

∩ [R1−λi

i , Ri]|

Ri − R1−λi

i

< δj for all j ≤ i − 1 . (7.6)

Now we introduce (disjoint) sets

A∗ =

∞
⋃

i=1

[R1−λi

i , Ri], B
∗ =

∞
⋃

i=1

[L1−λi

i , Li] (7.7)

and consider the sets

A = A∗ r M(B∗), B = B∗ r M(A∗) . (7.8)

It is clear from this definition that (A,B) ∈ Cross(∞) . The upper densities dA and
dB are lower bounded now with the help of (7.5) and (7.6).

For every i ∈ N the number of integers in A , which do not exceed Ri is at least

|[R1−λi

i , Ri] r
(

M(B∗) ∩ [R1−λi

i , Ri]
)

|

≥ (Ri − R1−λi

i ) −
i−1
∑

j=1

|M
(

[L
1−λj

j , Lj ]
)

∩ [R1−λi

i , Ri]|

> (Ri − R1−λi

i ) − (Ri − R1−λi

i ) ·

i−1
∑

j=1

δj > (Ri − R1−λi

i )(1 − δ) .

Therefore, for every i ≥ 1

|A ∩ [1, Ri]|

Ri

>
Ri − R1−λi

i

Ri

(1 − δ) =

(

1 −
1

Rλi

i

)

(1 − δ) > (1 − θ)(1 − δ) ,

because
1

Rλi

i

< θ for all i ∈ N .

Hence, dA ≥ (1 − θ)(1 − δ) . Similarly dB ≥ (1 − θ)(1 − δ) and therefore

dA · dB ≥ (1 − θ)2(1 − δ)2 .

The result follows, because θ and δ can be made arbitrarily small.
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8. Concluding remarks

The notion of cross–primitive pairs can be generalized to that of cross–primitive k–
tuples of sets (A1, . . . , Ak) . The understanding here is that any pair (Ai, Aj) (i 6= j)
is cross–primitive. Cross(x) then becomes Crossk(x) .

We guess that

1. lim
x→∞

max
(A1,...,Ak)∈Crossk(x)

k
∏

i=1

|Ai|

x
=

(

1

k

)k

2. max
(A1,...,Ak)∈Crossk(∞)

k
∏

i=1

dAi =

(

1

k

)k (

k − 1

k

)k(k−1)

3. sup
(A1,...,Ak)∈Crossk(∞)

k
∏

i=1

dAi = 1 .
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[5] P. Erdős, “Note on sequences of integers no one of which is divisible by any
other”, J. Lond. Math. Soc. 10, 136–128, 1935.
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[11] P. Erdős, “On the density of some sequences of integers”, Bull. Ann. Math. Soc.
54, 685–692, 1948.

[12] N.G. De Bruijn, C. van E. Tengbergen, and D. Kruyswijk, “On the set of divisors
of a number”, Nieuw Arch. f. Wisk. Ser II, 23, 191–193, 1949–51.
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