Skip to main content

MCell

  • Living reference work entry
  • First Online:
  • 316 Accesses

Definition

MCell (Monte Carlo Cell) is a program for simulating spatially resolved cell models using particle-based Monte Carlo algorithms.

Detailed Description

Biological processes at the cell level take place in small and often complex geometries and frequently involve only a small number of molecular players (tens to thousands). A prime example of a process in which this “microphysiology” plays a central role is neurotransmission at chemical synapses in the brain and in the peripheral nervous system (Stiles et al. 2001; Stiles and Bartol 2001). At such small subcellular scales, the familiar macroscopic concept of concentration breaks down and stochastic behavior dominates. MCell uses optimized Monte Carlo algorithms to track discrete molecules in space and time as they diffuse and interact with other effector molecules such as membrane channels, receptors, transporters, or enzymes (Bartol et al. 1991; Stiles and Bartol 2001; Kerr et al. 2008).

The first version of MCell, released in...

This is a preview of subscription content, log in via an institution.

References

  • Bartol TM, Land BR, Salpeter EE, Salpeter MM (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beenhakker MP, Huguenard JR (2010) Astrocytes as gatekeepers of GABAB receptor function. J Neurosci 30:15262–15276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coggan JS, Bartol TM, Esquenazi E, Stiles JR, Lamont S, Martone ME, Berg DK, Ellisman MH, Sejnowski TJ (2005) Evidence for ectopic neurotransmission at a neuronal synapse. Science 309:446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittrich M, Pattillo JM, King JD, Cho S, Stiles JR, Meriney SD (2013) An excess-calcium-binding-site model predicts neurotransmitter release at the neuromuscular junction. Biophys J 104:2751–2763

    Article  CAS  PubMed  Google Scholar 

  • Kerr RA, Levine H, Sejnowski TJ, Rappel W (2006) Division accuracy in a stochastic model of Min oscillations in Escherichia coli. Proc Natl Acad Sci USA 103:347–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr R, Bartol TM, Kaminsky B, Dittrich M, Chang JCJ, Baden S, Sejnowski TJ, Stiles JR (2008) Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J Sci Comput 30:3126–3149

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadkarni S, Bartol TM, Sejnowski TJ, Levine H (2010) Modelling vesicular release at hippocampal synapses. PLoS Comput Biol 6(11):e1000983

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadkarni S, Bartol TM, Stevens CF, Sejnowski TJ, Levine H (2012) Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal. Proc Natl Acad Sci USA 109(36):14657–14662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappel WJ, Levine H (2008) Receptor noise limitations on chemotactic sensing. Proc Natl Acad Sci USA 105:19270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scimemi A, Diamond JS (2012) The number and organization of Ca2+ channels in the active zone shapes neurotransmitter release from Schaffer collateral synapses. J Neurosci 32:18157–18176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 87–127

    Google Scholar 

  • Stiles JR, Van Helden D, Bartol TM, Salpeter EE, Salpeter MM (1996) Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci USA 93:5747–5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles JR, Bartol TM, Salpeter MM, Salpeter EE, Sejnowski TJ (2001) Synaptic variability: new insights from reconstructions and Monte Carlo simulation with MCell. In: Cowan M, Sudhof TC, Stevens CF (eds) Synapses. Johns Hopkins University Press, Baltimore/London, pp 681–731

    Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the funding from NIH/NIGMS grant P41GM103712. In addition we thank Jacob Czech for his help with the figure preparation; the members of the MCell development team, including Dipak Barua, Jacob Czech, Leonard Harris, Bob Kuczewski, and Jose Juan Tapia, for the helpful discussions; and Terry Sejnowski for the support and inspiration. We dedicate this entry to the memory of Joel R. Stiles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Faeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Bartol, T.M., Dittrich, M., Faeder, J.R. (2014). MCell. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_256-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_256-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics