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Definition

Information theory is a practical and theoretical framework developed for the study of communication over
noisy channels. Its probabilistic basis and capacity to relate statistical structure to function make it ideally
suited for studying information flow in the nervous system. It has a number of useful properties: it is a
general measure sensitive to any relationship, not only linear effects; it has meaningful units which in many
cases allow direct comparison between different experiments; and it can be used to study how much
information can be gained by observing neural responses in single trials, rather than in averages over
multiple trials. A variety of information theoretic quantities are commonly used in neuroscience — (see
entry “Definitions of Information-Theoretic Quantities”). In this entry we review some applications of
information theory in neuroscience to study encoding of information in both single neurons and neuronal

populations.



Detailed Description

Information analysis of spike trains to investigate the role of spike times in sensory

coding

Mutual information is a widely used tool to study how spike trains encode sensory variables. A typical
application of mutual information to spike train analysis is to use it to compare the information content of
different representations of neural responses that can be extracted from spike trains. The neural code used
by a neuron is often defined operationally as the smallest set of response variables that carries all (or
almost all) the information contained in the spike train of the neuron. Mutual information is used to
guantify the information content of increasingly complex representations of the neural response, and the
simplest representation that carries the most information is chosen as the putative neural code.

An example of this general approach is the investigation of the role of spike times in encoding information.
The most established hypothesis on how sensory information is represented in the brain is the spike count
coding hypothesis (Adrian, 1928) which suggests that neurons represent information by the number of
spikes discharged over some relevant time window. Another hypothesis is the spike timing encoding
hypothesis, which suggests that the timing of spikes may add important information to that already carried
by spike counts (Rieke et al., 1997; Panzeri et al., 2001). Information theory can be used to understand the
role of spike times in carrying sensory information, by using it to characterize the temporal resolution
needed to read out the information carried by spike trains. This can be performed by sampling the spike
train at different temporal precisions, At, (Fig. 1A) and computing the information parametrically as a
function of At (de Ruyter van Steveninck et al., 1997). The temporal precision required to read the temporal
code then can be defined as the largest At that still provides the full information obtained at higher
resolutions. If this precision is equal to the overall length of the window over which neurons carry
information, then information is carried only by the number of spikes. As an example, we carried out this
type of analysis on the responses of neurons from the VPm thalamic nucleus of rats whose whiskers were
stimulated by fast white noise deflections (Montemurro et al., 2007). We found that the temporal precision
At at which neurons transmitted information about whisker deflections was finer than 1 ms (Fig 1B),
suggesting that these neurons use high precision spike timing to carry information.

Information analysis of local field potentials to examine the information content of

network oscillations

Information analysis in neuroscience is not limited only to spike train analysis, but it has been used also to
study measured of massed population activity, such as Local Field Potentials (LFPs) (Buzsaki et al., 2012).
LFPs are operationally defined as the low pass filtered extracellular potential measured by an extracellular
intracranial electrode. There are at least three reasons why LFPs are widely used in neuroscience. The first
is that they are they are more easily and stably recorded in chronic settings than is the spiking activity of
individual neurons. The second is that the LFP captures key integrative synaptic processes and aspects of
subthreshold neural activity that cannot be measured by observing the spiking activity of a few neurons
alone (Einevoll et al., 2013). The third is that LFPs are more sensitive to network oscillations than measures
of spiking activity from small populations. LFPs from a sensory area typically show a power spectrum
containing fluctuations over a wide range of frequencies, from <1 Hz to 100 Hz or so. Given that the power
of oscillatory activity typically increases during the presentation of a sensory stimulus, many authors have



speculated that this oscillatory activity plays a role in brain communication and in particular in sensory-
related computations. However, understanding the function of these oscillations has remained elusive and
controversial. To gain insights into the function of oscillations in sensory encoding, it is important to
understand how they contribute to the representation of the natural sensory environment.

This problem can be addressed by quantifying the oscillation power in any given trial in response to
different stimuli, and then computing the information gained by the power at each frequency. Since the
power is a continuous variable, the computation of its information is potentially more difficult than the one
based on discrete variables like the spike train ones described above. There are at least two ways to solve
this problem. The first is to discretize the power in a number of equi-populated bins, and to use bias
corrections to eliminate the bias. The second is to fit the data to a parametric distribution. In this case, it is
worth reminding that the power computed with most spectral methods follows a chi-square distribution,
and thus its square or third can reasonable well approximated by a Gaussian distribution (Magri et al.,
2009). This makes the computation of information relatively straightforward. The third potential approach
is to use binless methods such as Nearest Neighbors approaches (Kraskov et al., 2004). We tried out these
methods extensively on computation of information in power of LFPs, obtaining very similar results with all
approaches (see e.g. Magri et al., 2009).

We applied this method to recordings from primary visual cortex of anaesthetised macaques during
stimulation with naturalistic colour movies (Belitski et al., 2008; Magri et al., 2012a). This revealed, for the
first time, how information about the naturalistic sensory environment is spread over the wide range of
frequencies expressed by cortical activity. Although the broad-band nature of the spectrum suggests a
contribution to coding from many frequency regions, we found that only two separate frequency regions
contribute to coding: the low frequency range and the gamma range (Belitski et al., 2008, see Fig. 2 below).

|II

Interestingly, low and high frequency ranges act as perfectly complementary or “orthogonal” information
channels: they share neither signal (i.e., stimulus information) nor “noise” (i.e., trial to trial variability for a
fixed stimulus). This finding has several implications. First, it shows that, despite the broadband spectrum,
only a small number of privileged frequency scales are involved in stimulus coding. Second, it suggests that
high-frequency and low-frequency oscillations are generated by different stimulus-processing neural
pathways. Third, the finding that different frequency bands code different sensory features in separate,
truly independent information channels reinforces the concept of “cortical multiplexing” that we proposed

above.

Information analysis of imaging data to study neural population coding or coupling

between different neural signals

The analysis tools that we have described above have, to date, largely been applied to spike train and time
series data recorded using electrophysiological techniques. However, in recent years, imaging technologies
have been developed which are capable of resolving neural signaling at systems, cellular and subcellular
resolution on a single trial basis (Denk et al., 1990, 1994; Stosiek et al., 2003; Chen et al., 2013). One way to
apply information-theoretic tools to the analysis of such imaging data is to convert the data to a “spike
train”, for instance by applying an algorithm for the detection of action potential evoked calcium transients
to calcium imaging data (Ofiativia et al., 2013). Such an approach has been used to perform information
theoretic analysis of simultaneously recorded populations of cerebellar Purkinje cell complex spikes
extracted from in vivo calcium imaging movies (Schultz et al., 2009). However, the use of imaging data may



also allow a wider set of questions to be approached than can be examined electrophysiologically, by
directly examining patterns of pixel intensities.

Another interesting application of information theory to neuroimaging data regards its use for
understanding the nature of the coupling between neural activity and fMRI responses. In fact, although
there is evidence that fMRI BOLD responses reflect neural activity, it is not clear whether the BOLD signal
reflects only the total power of massed neural activity, or only the power in a given band, or rather the
relationships between powers of neural activity in different frequency bands. This problem can be cast
theoretically into quantifying whether more information about BOLD can be gained from simultaneously
observing the power of neural activity in two or more bands of neural activity, than the information gained
by observing either band alone. Because mutual information captures all the ways a signal may statistically
relate to another, finding that another signal carries extra information demonstrates that this signal truly
provides some information that cannot be possibly obtained from the first one. This does not necessarily
hold when using methods that capture only specific relationships between signals. For example, an
increase in predictability based on linear models may reflect both additional information from the second
regressor as well as information that was already present in the first regressor but was not captured by the
linear assumption. Application of this idea to simultaneous recording of LFPs and fMRI BOLD in primary
visual cortex showed that the beta and alpha band carry information about BOLD that complements that
carried by the gamma band, the band that most correlates to the BOLD signal (Magri et al., 2012b).

Since imaging signals such as fMRI have an analogue rather than discrete nature, the practicality of
application of information theory to analogue brain signals is crucially dependent upon the development of
appropriate regularization and dimensionality reduction algorithms. These might stem from simple yet
efficient discretization algorithms (Belitski et al., 2008; Magri et al., 2009), nearest neighbors regularization
algorithms (Kraskov et al., 2004), the use of manifold learning techniques for nonlinear dimensionality
reduction (Roweis and Saul, 2000; Seung and Lee, 2000; Gan, 2006), and/or the evaluation of information
through a decoding step (Quian Quiroga and Panzeri, 2009).
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Figures and Figure Captions
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Figure 1: Effect of temporal resolution of spike times on information. (A): The response of a neuron is
initially recorded as a series of spike times. To investigate the temporal resolution at which spike times
carry information, the spike train is binned at a variety of different time resolutions, by labeling the
response at each time with the number of spikes occurring within that bin, thereby transforming the
response into a discrete integer sequence. (B): The information rate (information per unit time) about
whisker deflections carried by VPm thalamic neurons as a function of bin width, At, used to bin neural
responses. Information rate increased with bin resolution up to 0.5ms, the limit of the experimental setup.
This shows that a very fine temporal resolution is needed to read out the sensory messages carried by
these thalamic spike trains. Figure reprinted with permission from (Ince et al., 2010).



A Average Spectrum
g — stimulus
5 = = = s 1 gspontaneous
2
o ™ry
Q N kel L L
B Sinlge-frequency Information

0.3
0
=

0.1

0 50 100 150 200

f [Hz]

Fig. 2: The visual information carried by LFP power at different frequencies. A) LFP power spectrum of V1
recordings anaesthetized macaques during either spontaneous activity in the dark (dashed line) or during
the presentation of a color movie stimulus (solid line). (B) Information about the movie stimulus carried by
LFP power at different frequencies. The area indicates the SEM. Reproduced from (Magri et al., 2012a).



