Skip to main content

Synthetic Neuronal Circuits/Networks

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 200 Accesses

Definition

Processing of information in neuronal networks involves communication between cells with complex dendritic and axonal arbors, belonging to multiple populations each having characteristic firing properties. This complex 3D structure, where synaptic connectivity between groups of cells can also be restricted to specific anatomical layers, is believed to be an important determinant of network behavior.

While many initiatives aim to reconstruct the full connectome of specific brain regions by mapping each neuron and synaptic connection in a block of tissue, other approaches take existing information on the known cell types and their overall connectivity rules and attempt to generate synthetic neuronal circuits from these. This can be useful for checking the completeness of knowledge of the circuit and to provide input to large-scale simulations of network behavior.

Detailed Description

Reconstructed and Synthetic Neurons

Recent developments in the field of connectomicsare...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aćimović J, Mäki-Marttunen T, Havela R, Teppola H, Linne ML (2011) Modeling of neuronal growth in vitro: comparison of simulation tools NETMORPH and CX3D. EURASIP J Bioinform Syst Biol 2011, 616382

    PubMed  PubMed Central  Google Scholar 

  • Bezaire MJ, Soltesz I (2013) Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23(9):751–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94(5):3637–3642

    Article  PubMed  Google Scholar 

  • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8(3):183–208

    Article  PubMed  CAS  Google Scholar 

  • Cuntz H, Forstner F, Borst A, Häusser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Comput Biol 6(8):e1000877

    Article  PubMed  PubMed Central  Google Scholar 

  • Eberhard J, Wanner A, Wittum G (2006) NeuGen: a tool for the generation of realistic morphology of cortical neurons and neural networks in 3D. Neurocomputing 70(13):327–342. doi:10.1016/j.neucom.2006.01.028

    Article  Google Scholar 

  • Egger R, Narayanan RT, Helmstaedter M, de Kock CPJ, Oberlaender M (2012) 3D Reconstruction and standardization of the rat Vibrissal cortex for precise registration of single neuron morphology. PLoS Comput Biol 8(12):e1002837. doi:10.1371/journal.pcbi.1002837

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Evans RC, Polavaram S (2013) Growing a garden of neurons. Front Neuroinform 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54(2):219–235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US, Barnes SR, Dimitrova YD, Silver RA (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6(6):e1000815

    Article  PubMed  PubMed Central  Google Scholar 

  • Helmstaedter MN, Briggman K, Turaga S, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168–174. doi:10.1038/nature12346

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich E (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  PubMed  CAS  Google Scholar 

  • Koene R, Tijms B, van Hees P, Postma F, de Ridder A, Ramakers G, van Pelt J, van Ooyen A (2009) NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics 7(3):195–210. doi:10.1007/s12021-009-9052-3

    Article  PubMed  Google Scholar 

  • Kozloski J, Wagner J (2011) An ultrascalable solution to large-scale neural tissue simulation. Front Neuroinform 5:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Parekh R, Ascoli G (2013) Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron 77(6):1017–1038. doi:http://dx.doi.org/10.1016/j.neuron.2013.03.008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Potjans TC, Diesmann M (2012) The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb Cortex 24(3):785–806.

    Article  PubMed  PubMed Central  Google Scholar 

  • Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93(1):437–453

    Article  PubMed  Google Scholar 

  • Schneider CJ, Bezaire M, Soltesz I (2012) Toward a full-scale computational model of the rat dentate gyrus. Front Neural Circuits 6:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Silver RA (2010) Neuronal arithmetic. Nat Rev Neurosci 11(7):474–489

    Article  PubMed  CAS  Google Scholar 

  • Solinas S, Nieus T, D’Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12

    PubMed  PubMed Central  Google Scholar 

  • Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FE, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93(4):2194–2232

    Article  PubMed  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B, Biol Sci 314(1165):1–340

    Article  CAS  Google Scholar 

  • Zubler F, Hauri A, Pfister S, Bauer R, Anderson JC et al (2013) Simulating cortical development as a self constructing process: a novel multi-scale approach combining molecular and physical aspects. PLoS Comput Biol 9(8):e1003173. doi:10.1371/journal.pcbi.1003173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padraig Gleeson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Gleeson, P. (2014). Synthetic Neuronal Circuits/Networks. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_289-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_289-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics