Skip to main content

Delta Rhythms: Models and Physiology

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Slow oscillation; Slow-wave oscillation (SWO)

Definition

A high amplitude brain rhythm with frequency between 1 and 4 Hz.

Detailed Description

History

The term “delta” was first introduced by Walter in 1936 to describe frequencies below the alpha (9–11 Hz) band while attempting to diagnose tumors using EEG signatures (Walter 1936). He subsequently, with Berger, subdivided this band to include theta rhythms (between 4 and 8 Hz). Since then the presentation of delta rhythms has been shown to be variable in frequency and amplitude during sleep (Church 1975), and some observers subdivide delta further into delta1 (1–2 Hz) and delta2 (3–4 Hz); this may have some mechanistic validity given the different potential origins of the rhythm (see below, Weiss and Rappelsberger 2000).

Association with Brain State

Delta rhythms (1–4 Hz) are predominantly associated with deep sleep (stage N3). These sleep stages are manifest most strongly during the first few hours of sleep in humans,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107:69–83

    Article  CAS  PubMed  Google Scholar 

  • Amzica F, Nuñez A, Steriade M (1992) Delta frequency (1–4 Hz) oscillations of perigeniculate thalamic neurons and their modulation by light. Neuroscience 51:285–294

    Article  CAS  PubMed  Google Scholar 

  • Armstrong-James M, Fox K (1988) Evidence for a specific role for cortical NMDA receptors in slow-wave sleep. Brain Res 451:189–196

    Article  CAS  PubMed  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2002) Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. J Neurosci 22:8691–8704

    CAS  PubMed  Google Scholar 

  • Beltramo R, D’Urso G, Dal Maschio M, Farisello P, Bovetti S, Clovis Y, Lassi G, Tucci V, De Pietri J, Tonelli D, Fellin T (2013) Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat Neurosci 16:227–234

    Article  CAS  PubMed  Google Scholar 

  • Campbell IG (2009) EEG recording and analysis for sleep research. Curr Protoc Neurosci Chapter 10:Unit10.2

    PubMed  Google Scholar 

  • Carracedo LM, Kjeldsen H, Cunnington L, Jenkins A, Schofield I, Cunningham MO, Davies CH, Traub RD, Whittington MA (2013) A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J Neurosci 33:10750–10761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Church MW (1975) Changes in frequency and amplitude of delta activity during sleep. Electroencephalogr Clin Neurophysiol 39:1–7

    Article  CAS  PubMed  Google Scholar 

  • Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1996) Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274:771–774

    Article  CAS  PubMed  Google Scholar 

  • Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13:9–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Csercsa R, Dombovári B, Fabó D, Wittner L, Eross L, Entz L, Sólyom A, Rásonyi G, Szucs A, Kelemen A, Jakus R, Juhos V, Grand L, Magony A, Halász P, Freund TF, Maglóczky Z, Cash SS, Papp L, Karmos G, Halgren E, Ulbert I (2010) Laminar analysis of slow wave activity in humans. Brain 13:2814–2829

    Article  Google Scholar 

  • Destexhe A (2009) Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. J Comput Neurosci 27:493–506

    Article  PubMed  Google Scholar 

  • Destexhe A, Neubig M, Ulrich D, Huguenard J (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574–3588

    CAS  PubMed  Google Scholar 

  • Destexhe A, Hughes SW, Rudolph M, Crunelli V (2007) Are corticothalamic ‘up’ states fragments of wakefulness? Trends Neurosci 30:334–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fell J, Elfadil H, Röschke J, Burr W, Klaver P, Elger CE, Fernández G (2002) Human scalp recorded sigma activity is modulated by slow EEG oscillations during deep sleep. Int J Neurosci 112:893–900

    Article  PubMed  Google Scholar 

  • Franco-Pérez J, Paz C (2009) Quinine, a selective gap junction blocker, decreases REM sleep in rats. Pharmacol Biochem Behav 94:250–254

    Article  PubMed  Google Scholar 

  • Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535–4545

    Article  CAS  PubMed  Google Scholar 

  • Hill S, Tononi G (2005) Modeling sleep and wakefulness in the thalamocortical system. J Neurophysiol 93:1671–1698

    Article  PubMed  Google Scholar 

  • Hinton GE, Zemel RS (1994) Autoencoders, minimum description length and Helmholtz free energy. In: Cowan JD, Tesauro G, Alspector J (eds) Advances in neural information processing systems 6. Morgan Kaufmann, San Mateo, pp 3–10

    Google Scholar 

  • Hinton GE, Dayan P, Frey BJ, Neal RM (1995) The “wake-sleep” algorithm for unsupervised neural networks. Science 268:1158–1161

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430:78–81

    Article  CAS  PubMed  Google Scholar 

  • Hughes SW, Cope DW, Tóth TI, Williams SR, Crunelli V (1999) All thalamocortical neurones possess a T-type Ca2+ ‘window’ current that enables the expression of bistability-mediated activities. J Physiol 517:805–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ioannides AA, Kostopoulos GK, Liu L, Fenwick PB (2009) MEG identifies dorsal medial brain activations during sleep. Neuroimage 44:455–468

    Article  PubMed  Google Scholar 

  • Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320:110–113

    Article  CAS  PubMed  Google Scholar 

  • Larson J, Wong D, Lynch G (1986) Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368:347–350

    Article  CAS  PubMed  Google Scholar 

  • Lytton WW, Destexhe A, Sejnowski TJ (1996) Control of slow oscillations in the thalamocortical neuron: a computer model. Neuroscience 70:673–684

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oláh S, Füle M, Komlósi G, Varga C, Báldi R, Barzó P, Tamás G (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461:1278–1281

    Article  PubMed Central  PubMed  Google Scholar 

  • Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci 12:919–926

    Article  CAS  PubMed  Google Scholar 

  • Pirchio M, Turner JP, Williams SR, Asprodini E, Crunelli V (1997) Postnatal development of membrane properties and delta oscillations in thalamocortical neurons of the cat dorsal lateral geniculate nucleus. J Neurosci 17:5428–5444

    CAS  PubMed  Google Scholar 

  • Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, Tononi G (2007) Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30:1643–1657

    PubMed Central  PubMed  Google Scholar 

  • Schroeder CE, Lakatos P (2009) The gamma oscillation: master or slave? Brain Topogr 22:24–26

    Article  PubMed  Google Scholar 

  • Staubli U, Lynch G (1990) Stable depression of potentiated synaptic responses in the hippocampus with 1–5 Hz stimulation. Brain Res 513:113–118

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Domich L, Oakson G, Deschênes M (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57:260–273

    CAS  PubMed  Google Scholar 

  • Steriade M, Gloor P, Llinás RR, Lopes de Silva FH, Mesulam MM (1990) Report of IFCN committee on basic mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76:481–508

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi D, Hirabayashi T, Tamura K, Miyashita Y (2011) Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex. Science 331:1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62:143–150

    Article  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    Article  PubMed  Google Scholar 

  • Tóth T, Crunelli V (1992) Computer simulation of the pacemaker oscillations of thalamocortical cells. Neuroreport 3:65–68

    Article  PubMed  Google Scholar 

  • Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650

    CAS  PubMed  Google Scholar 

  • Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FEN, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts. J Neurophysiol 93:2194–2232

    Article  PubMed  Google Scholar 

  • Vassalli A, Dijk DJ (2009) Sleep function: current questions and new approaches. Eur J Neurosci 29:1830–1841

    Article  PubMed  Google Scholar 

  • Vyazovskiy VV, Cirelli C, Tononi G, Tobler I (2008) Cortical metabolic rates as measured by 2-deoxyglucose-uptake are increased after waking and decreased after sleep in mice. Brain Res Bull 75:591–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472:443–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walter WG (1936) The location of cerebral tumors by electroencephalography. Lancet 2:305–308

    Article  Google Scholar 

  • Weiss S, Rappelsberger P (2000) Long-range EEG synchronization during word encoding correlates with successful memory performance. Brain Res Cogn Brain Res 9:299–312

    Article  CAS  PubMed  Google Scholar 

  • Williams SR, Turner JP, Hughes SW, Crunelli V (1994) On the nature of anomalous rectification in thalamocortical neurones of the cat ventrobasal thalamus in vitro. J Physiol 505:727–747

    Article  Google Scholar 

  • Xu TX, Yao WD (2010) D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex. Proc Natl Acad Sci 107:16366–16371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Traub M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Traub, R., Whittington, M. (2014). Delta Rhythms: Models and Physiology. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_305-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_305-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics