Skip to main content

Nitric Oxide Neuromodulation

  • Living reference work entry
  • Latest version View entry history
  • First Online:
  • 245 Accesses

Synonyms

Nitric oxide volume signaling

Definition

Neuromodulators are a class of neurotransmitter that diffuse into the region surrounding an emitting neuron and affect potentially large numbers of other neurons by modulating their responses, irrespective of whether or not they are electrically connected to the modulating neuron. Nitric oxide (NO) is a particularly interesting example of a neuromodulator because of its very small size and gaseous state. The type of modulatory signaling NO is involved in is sometimes known as volume signaling and is in sharp contrast to the connectionist point-to-point electrical transmission picture that dominated thinking about the nervous system for many decades, whereby neural signaling could only occur between synaptically connected neurons.

Detailed Description

Background

The discovery that the toxic gas nitric oxide (NO) is synthesized in biological systems and functions as a physiological signaling molecule earned Robert Furchgott, Louis...

This is a preview of subscription content, log in via an institution.

References

  • Baranano D, Ferris C, Snyder S (2001) Atypical neural messengers. Trends Neurosci 24(2):99–106

    Article  CAS  PubMed  Google Scholar 

  • Brazier MAB (1961) A history of the electrical activity of the brain. Pitman, London

    Google Scholar 

  • Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87:682–685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    Article  CAS  PubMed  Google Scholar 

  • Buckley C (2008) A systemic analysis of the ideas immanent in neuromodulation. PhD thesis, University of Southampton

    Google Scholar 

  • Edelman GM, Gally JA (1992) Nitric oxide: linking space and time in the brain. Proc Natl Acad Sci U S A 89:11651–11652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eggenberger P, Ishiguro A, Tokura S, Kondo T, Uchikawa Y (2000) Toward seamless transfer from simulated to real worlds: a dynamically – rearranging neural network approach. In: Wyatt J, Demiris J (eds) Advances in robot learning, Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 44–60

    Chapter  Google Scholar 

  • Elphick M, Williams L, O’Shea M (1996) New features of the locust optic lobe: evidence of a role for nitric oxide in insect vision. J Exp Biol 199:2395–2407

    CAS  PubMed  Google Scholar 

  • Floreano D, Epars Y, Zufferey JC, Mattiussi C (2006) Evolution of spiking neural circuits in autonomous mobile robots. Int J Intell Syst 21(9):1005–1024

    Article  Google Scholar 

  • Floreano D, Husbands P, Nolfi S (2008) Evolutionary robotics. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 1423–1451

    Chapter  Google Scholar 

  • Gally JA, Montague PR, Reeke GN Jr, Edelman GM (1990) The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci U S A 87:3547–3551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grand S (1997) Creatures: an exercise in creation. IEEE Intell Syst Mag 12(4):4–6

    Google Scholar 

  • Griffiths C, Garthwaite J (2001) The shaping of nitric oxide signals by a cellular sink. J Physiol (Lond) 536:855–862

    Article  CAS  Google Scholar 

  • Husbands P, Smith T, Jakobi N, O’Shea M (1998) Better living through chemistry: evolving GasNets for robot control. Connect Sci 10(4):185–210

    Article  Google Scholar 

  • Husbands P, Philippides A, Vargas P, Buckley C, Fine P, Di Paolo E, O’Shea M (2010) Spatial, temporal and modulatory factors affecting GasNet evolvability in a visually guided robotics task. Complexity 16(2):35–44

    Article  Google Scholar 

  • Kondo T (2007) Evolutionary design and behavior analysis of neuromodulatory neural networks for mobile robots control. Appl Soft Comput 7(1):189–202

    Article  Google Scholar 

  • Kondo T, Ishiguro A, Uchikawa Y, Eggenberger P (1999) Autonomous robot control by a neural network with dynamically-rearranging function. In: Fourth international symposium on artificial life and robotics: AROB99. Oita, pp 324–329

    Google Scholar 

  • Lancaster J (1994) Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci U S A 91:8137–8141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lancaster J (1996) Diffusion of free nitric oxide. Methods Enzymol 268:31–50

    Article  CAS  PubMed  Google Scholar 

  • Lancaster J (1997) A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1:18–30

    Article  CAS  PubMed  Google Scholar 

  • Laurent M, Lepoivre M, Tenu J-P (1996) Kinetic modelling of the nitric oxide gradient generated in vitro by adherent cells expressing inducible nitric oxide synthase. Biochem J 314:109–113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Miller M, Joshi M, Sadowska-Krowicka H, Clark D, Lancaster J (1998) Diffusion-limited reaction of free nitric oxide with erythrocytes. J Biol Chem 273(30):18709–18713

    Article  CAS  PubMed  Google Scholar 

  • McHale G, Husbands P (2004) Quadrupedal locomotion: GasNets, CTRNNs and hybrid CTRNN/PNNS compared. In: Pollack J, Bedau M, Husbands P, Ikegami T, Watson R (eds) Proceedings of 9th international conference on the simulation and synthesis of living systems (Alife IX). MIT Press, Cambridge, MA, pp 106–112

    Google Scholar 

  • Montague P, Gally J, Edelman G (1991) Spatial signaling in the development and function of neural connections. Cereb Cortex 1(3):1047–3211

    Article  Google Scholar 

  • Mungrue IN, Bredt DS (2004) nNOS at a glance: implications for brain and brawn. J Cell Sci 117:2627–2629

    Article  CAS  PubMed  Google Scholar 

  • Ott SR, Philippides A, Elphick MR, O’Shea M (2007) Enhanced fidelity of diffusive NO signalling by the spatial segregation of source and target neurons in the memory center of an insect brain. Eur J Neurosci 25:181–190

    Article  PubMed  Google Scholar 

  • Philippides A, Husbands P, O’Shea M (1998) Neural signalling: it’s a gas! In: Niklasson L, Boden M, Ziemke T (eds) Proceedings of the 8th international conference on artificial neural networks (ICANN 98), Perspectives in neural systems. Springer, London, pp 979–984

    Google Scholar 

  • Philippides AO, Husbands P, O’Shea M (2000) Four-dimensional neuronal signaling by nitric oxide: a computational analysis. J Neurosci 20(3):1199–1207

    CAS  PubMed  Google Scholar 

  • Philippides AO, Husbands P, Smith T, O’Shea M (2003) Structure based models of NO diffusion in the nervous system. In: Feng J (ed) Computational neuroscience: a comprehensive approach. Chapman and Hall/CRC Press, Boca Raton, pp 97–130

    Google Scholar 

  • Philippides A, Ott S, Husbands P, Lovick T, O’Shea M (2005a) Modeling co-operative volume signaling in a plexus of nitric oxide synthase-expressing neurons. J Neurosci 25(28):6520–6532

    Article  CAS  PubMed  Google Scholar 

  • Philippides A, Husbands P, Smith T, O’Shea M (2005b) Flexible couplings: diffusing neuromodulators and adaptive robotics. Artif Life 11(1&2):139–160

    Article  PubMed  Google Scholar 

  • Purves D (1997) Neuroscience. Sinauer, Sunderland

    Google Scholar 

  • Smith TMC, Husbands P, Philippides A, O’Shea M (2002) Neuronal plasticity and temporal adaptivity: GasNet robot control networks. Adapt Behav 10(3&4):161–184

    Google Scholar 

  • Smith T, Husbands P, O’Shea M (2003) Local evolvability, neutrality, and search difficulty in evolutionary robotics. Biosystems 69:223–243

    Article  PubMed  Google Scholar 

  • Steinert JR, Kopp-Scheinpflug C, Baker C, Challiss RAJ, Mistry R, Haustein MD (2008) Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron 60:642–656

    Article  CAS  PubMed  Google Scholar 

  • Stone J, Marletta M (1996) Spectral and kinetic studies on the activation of soluble guanylyl cyclase by nitric oxide. Biochemistry 35:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Liu X, Kantrow S, Lancaster J (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci U S A A98:355–360

    Article  Google Scholar 

  • Tononi G, Sporns O, Edelman G (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci U S A 96:3257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vargas P, DiPaolo E, Husbands P (2007) Preliminary investigations on the evolvability of a non-spatial GasNet model. In: Costa FA et al (eds) Proceedings ECAL’07, Lecture notes in computer science 4648. Springer, Berlin, pp 966–975

    Google Scholar 

  • Vargas P, DiPaolo E, Harvey I, Husbands P (2014) The horizons of evolutionary robotics. MIT Press, Cambridge, MA

    Google Scholar 

  • Vaughn M, Kuo L, Laio J (1998a) Effective diffusion distance of nitric oxide in the microcirculation. Am J Physiol 274 ie:1705–1714

    Google Scholar 

  • Vaughn M, Kuo L, Liao J (1998b) Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am J Physiol 274 ie:2163–2176

    Google Scholar 

  • Wood J, Garthwaite J (1994) Model of the diffusional spread of nitric oxide -implications for neural nitric oxide signaling and its pharmacological properties. Neuropharmacology 33:1235–1244

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O’Shea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

O’Shea, M., Husbands, P., Philippides, A. (2014). Nitric Oxide Neuromodulation. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_330-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_330-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Nitric Oxide Neuromodulation
    Published:
    30 May 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_330-2

  2. Original

    Nitric Oxide Neuromodulation
    Published:
    07 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_330-1