Skip to main content

Models of Fly Lobula Plate Tangential Cells (LPTCs)

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 410 Accesses

Definition

A network of around 60 highly interconnected interneurons, the lobula plate tangential cells (LPTCs), is at the core of optic flow calculations in the fly visual system. Exquisite data is available for these cells on their anatomy and electrophysiology in vivo, including the characterization of responses to visual stimulation. Consequently, it has been possible to derive models that reproduce the morphology and the detailed electrophysiology of the cells within the network and to associate the features of the network to optic flow computations that it performs. The LPTC network therefore is a prime example of a neural circuit where sophisticated computations, connectivity schemes, and anatomy are understood in a unifying manner.

Detailed Description

Circuit Overview of the Lobula Plate

The lobula plate in the fly is a neural center for course control during flight (Borst and Haag 2002). It encodes visual motion information in a retinotopic manner: Neighborhood relationships...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland DK (1991) Reading a neural code. Science 252(80):1854–1857

    Article  CAS  PubMed  Google Scholar 

  • Borst A (2012) Fly motion vision: from optic flow to visual course control. e-Neuroforum 3:59–66

    Article  Google Scholar 

  • Borst A, Egelhaaf M (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. Proc Natl Acad Sci U S A 89:4139–4143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borst A, Haag J (1996) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. J Comput Neurosci 3:313–336

    Article  CAS  PubMed  Google Scholar 

  • Borst A, Haag J (2001) Effects of mean firing on neural information rate. J Comput Neurosci 10:213–221

    Article  CAS  PubMed  Google Scholar 

  • Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A 188:419–437

    Article  CAS  Google Scholar 

  • Borst A, Weber F (2011) Neural action fields for optic flow based navigation: a simulation study of the fly lobula plate network. PLoS One 6:e16303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borst A, Haag J, Reiff DF (2010) Fly motion vision. Annu Rev Neurosci 33:49–70

    Article  CAS  PubMed  Google Scholar 

  • Budd JML, Kovács K, Ferecskó AS et al (2010) Neocortical axon arbors trade-off material and conduction delay conservation. PLoS Comput Biol 6:e1000711

    Article  PubMed Central  PubMed  Google Scholar 

  • Cuntz H (2012) The dendritic density field of a cortical pyramidal cell. Front Neuroanat 6:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Cuntz H, Haag J, Borst A (2003) Neural image processing by dendritic networks. Proc Natl Acad Sci U S A 100:11082–11085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuntz H, Borst A, Segev I (2007a) Optimization principles of dendritic structure. Theor Biol Med Model 4:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Cuntz H, Haag J, Forstner F et al (2007b) Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons. Proc Natl Acad Sci U S A 104:10229–10233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuntz H, Forstner F, Haag J, Borst A (2008) The morphological identity of insect dendrites. PLoS Comput Biol 4:e1000251

    Article  PubMed Central  PubMed  Google Scholar 

  • Cuntz H, Forstner F, Borst A, Häusser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Comput Biol 6:e1000877

    Article  PubMed Central  PubMed  Google Scholar 

  • Cuntz H, Mathy A, Häusser M (2012) A scaling law derived from optimal dendritic wiring. Proc Natl Acad Sci U S A 109:11014–11018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dürr V, Egelhaaf M (1999) In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. J Neurophysiol 82:3327–3338

    PubMed  Google Scholar 

  • Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network. Biol Cybern 52:123–140

    Article  Google Scholar 

  • Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurones. Biol Cybern 52:195–209

    Google Scholar 

  • Egelhaaf M (1985c) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells. Biol Cybern 52:267–280

    Article  Google Scholar 

  • Eichner H, Joesch M, Schnell B et al (2011) Internal structure of the fly elementary motion detector. Neuron 70:1155–1164

    Article  CAS  PubMed  Google Scholar 

  • Elyada YM, Haag J, Borst A (2009) Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons. Nat Neurosci 12:327–332

    Article  CAS  PubMed  Google Scholar 

  • Farrow K, Borst A, Haag J (2005) Sharing receptive fields with your neighbors: tuning the vertical system cells to wide field motion. J Neurosci 25:3985–3993

    Article  CAS  PubMed  Google Scholar 

  • Farrow K, Haag J, Borst A (2006) Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron. Nat Neurosci 9:1312–1320

    Article  CAS  PubMed  Google Scholar 

  • Gauck V, Egelhaaf M, Borst A (1997) Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system. J Comp Neurol 381:489–499

    Article  CAS  PubMed  Google Scholar 

  • Geiger G, Nässel DR (1981) Visual orientation behaviour of flies after selective laser beam ablation of interneurones. Nature 293:398–399

    Article  CAS  PubMed  Google Scholar 

  • Haag J, Borst A (1996) Amplification of high-frequency synaptic inputs by active dendritic membrane processes. Nature 379:639–641

    Article  CAS  Google Scholar 

  • Haag J, Borst A (2001) Recurrent network interactions underlying flow-field selectivity of visual interneurons. J Neurosci 21:5685–5692

    CAS  PubMed  Google Scholar 

  • Haag J, Borst A (2002) Dendro-dendritic interactions between motion-sensitive large-field neurons in the fly. J Neurosci 22:3227–3233

    CAS  PubMed  Google Scholar 

  • Haag J, Borst A (2004) Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons. Nat Neurosci 7:628–634

    Article  CAS  PubMed  Google Scholar 

  • Haag J, Borst A (2005) Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly. J Comp Physiol A 191:445–454

    Article  Google Scholar 

  • Haag J, Borst A (2008) Electrical coupling of lobula plate tangential cells to a heterolateral motion-sensitive neuron in the fly. J Neurosci 28:14435–14442

    Article  CAS  PubMed  Google Scholar 

  • Haag J, Theunissen F, Borst A (1997) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties. J Comput Neurosci 4:349–369

    Article  CAS  PubMed  Google Scholar 

  • Haag J, Vermeulen A, Borst A (1999) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: III. Visual response properties. J Comput Neurosci 7:213–234

    Article  CAS  PubMed  Google Scholar 

  • Haag J, Wertz A, Borst A (2007) Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron. J Neurosci 27:1992–2000

    Article  CAS  PubMed  Google Scholar 

  • Haag J, Wertz A, Borst A (2010) Central gating of fly optomotor response. Proc Natl Acad Sci U S A 107:20104–20109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische analyze der zeit-, reihenfolgen- und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Zeitschrift fuer Naturforsch 11b:513–524

    Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly – I. The horizontal cells: structure and signals. Biol Cybern 45:143–156

    Article  Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly – II. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46:67–79

    Article  Google Scholar 

  • Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384:463–466

    Article  CAS  PubMed  Google Scholar 

  • Krapp HG, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79:1902–1917

    CAS  PubMed  Google Scholar 

  • Laughlin SB (1999) Visual motion: dendritic integration makes sense of the world. Curr Biol 9:R15–R17

    Article  CAS  PubMed  Google Scholar 

  • Maisak MS, Haag J, Ammer G et al (2013) A directional tuning map of Drosophila elementary motion detectors. Nature 500:212–216

    Article  CAS  PubMed  Google Scholar 

  • Meyer EP, Matute C, Streit P, Nässel DR (1986) Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84:207–216

    Article  CAS  PubMed  Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 527:491–527

    Article  Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. MIT Press/Wiley, New York, pp 377–390

    Google Scholar 

  • Rieke F, Warland DK, de Ruyter van Steveninck RR, Bialek W (1999) Spikes – exploring the neural code. MIT Press, Cambridge, MA

    Google Scholar 

  • De Ruyter van Steveninck RR, Bialek W (1988) Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences. Proc R Soc B 234:379–414

    Article  Google Scholar 

  • Single S, Borst A (1998) Dendritic integration and its role in computing image velocity. Science 281(80):1848–1850

    Article  CAS  PubMed  Google Scholar 

  • Takemura S, Bharioke A, Lu Z et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warzecha A-K, Egelhaaf M, Borst A (1993) Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. J Neurophysiol 69:329–339

    CAS  PubMed  Google Scholar 

  • Weber F, Eichner H, Cuntz H, Borst A (2008) Eigenanalysis of a neural network for optic flow processing. New J Phys 10:1–21

    Article  Google Scholar 

  • Wertz A, Borst A, Haag J (2008) Nonlinear integration of binocular optic flow by DNOVS2, a descending neuron of the fly. J Neurosci 28:3131–3140

    Article  CAS  PubMed  Google Scholar 

  • Wertz A, Gaub B, Plett J et al (2009) Robust coding of ego-motion in descending neurons of the fly. J Neurosci 29:14993–15000

    Article  CAS  PubMed  Google Scholar 

  • Wertz A, Haag J, Borst A (2012) Integration of binocular optic flow in cervical neck motor neurons of the fly. J Comp Physiol A 198:655–668

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Alexander Borst for the helpful discussions and for reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Cuntz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Cuntz, H. (2013). Models of Fly Lobula Plate Tangential Cells (LPTCs). In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_331-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_331-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics