Skip to main content

Hierarchical Models of the Visual System

Synonyms

Deep learning architecture; Hierarchical architectures; Hubel and Wiesel model; Simple-to-complex hierarchy

Definition

Hierarchical models of the visual system are neural networks with a layered topology: In these networks, the receptive fields (i.e., the region of the visual space that units respond to) of units at one level of the hierarchy are constructed by combining inputs from units at a lower level. After a few processing stages, small receptive fields tuned to simple stimuli get combined to form larger receptive fields tuned to more complex stimuli. Such anatomical and functional hierarchical architecture is a hallmark of the organization of the visual system.

Since the pioneering work of Hubel and Wiesel (1962), a variety of hierarchical models have been described from relatively small-scale models of the primary visual cortex to very large-scale (system-level) models of object and action recognition, which account for processing in large portions of the visual field...

This is a preview of subscription content, log in via an institution.

References

  • Amit Y, Mascaro M (2003) An integrated network for invariant visual detection and recognition. Vision Res 43(19):2073–2088

    Article  PubMed  Google Scholar 

  • Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115–147

    Article  CAS  PubMed  Google Scholar 

  • Carandini M, Heeger DJ (2011) Normalization as a canonical neural computation. Nature Rev Neurosci 13:51–62

    Google Scholar 

  • Chance FS, Nelson SB, Abbott LF (2000) A recurrent network model for the phase invariance of complex cell responses. Neurocomputing 32:339–344

    Article  Google Scholar 

  • Chen X, Han F, Poo M-m, Dan Y (2007) Excitatory and suppressive receptive field subunits in awake monkey primary visual cortex (V1). Proc Natl Acad Sci U S A 104(48):19120–19125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge, MA

    Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4(8):2051–2062

    CAS  PubMed  Google Scholar 

  • Dicarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron 73(3):415–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex (New York, NY: 1991) 1(1):1–47

    CAS  Google Scholar 

  • Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36:193–202

    Article  CAS  PubMed  Google Scholar 

  • Geman S (1999) Hierarchy in machine and natural vision. In: Proceedings of the 11th Scandinavian Conference on Image Analysis, Kangerlusssuaq, Greenland, pp 7–11

    Google Scholar 

  • Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological movements. Neuroscience 4:179–192

    CAS  PubMed  Google Scholar 

  • Grossberg S, Mingolla E, Pack C (1999) A neural model of motion processing and visual navigation by cortical area MST. Cereb Cortex 9(8):878–895

    Article  CAS  PubMed  Google Scholar 

  • Grossberg S, Markowitz J, Cao Y (2011a) On the road to invariant recognition: explaining tradeoff and morph properties of cells in inferotemporal cortex using multiple-scale task-sensitive attentive learning. Neural Netw 24(10):1036–1049

    Article  PubMed  Google Scholar 

  • Grossberg S, Srinivasan K, Yazdanbakhsh A (2011b) On the road to invariant object recognition: how cortical area V2 transforms absolute to relative disparity during 3D vision. Neural Netw 24(7):686–692

    Article  PubMed  Google Scholar 

  • Hegdé J, Essen DV (2007) A comparative study of shape representation in macaque visual areas V2 and V4. Cereb Cortex 17:1100–1116

    Article  PubMed  Google Scholar 

  • Hegdé J, Felleman DJ (2007) Reappraising the functional implications of the primate visual anatomical hierarchy. Neuroscientist 13(5):416–421

    Article  PubMed  Google Scholar 

  • Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36(5):791–804

    Article  CAS  PubMed  Google Scholar 

  • Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jhuang H, Serre T, Wolf L, Poggio T (2007) A biologically inspired system for action recognition. In: 2007 I.E. 11th international conference on computer vision, Rio de Janeiro, Brazil pp 14–20

    Google Scholar 

  • Jones JP, Palmer LA (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233–1258

    CAS  PubMed  Google Scholar 

  • Kouh M, Poggio T (2008) A general mechanism for cortical tuning: normalization and synapses can create Gaussian-like tuning. 20(6):1427–1451

    Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Infr Proc Syst 2:1097–1105

    Google Scholar 

  • Landy M, Movshon J (1991) Computational models of visual processing. Bradford Books Cambridge, MA

    Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • Marko H, Giebel H (1970) Recognition of handwritten characters with a system of homogeneous layers. Nachrichtentechnische Zeitschrift 23:455–459

    Google Scholar 

  • Maruyama M, Girosi F, Poggio T (1992) A connection between GRBF and MLP. MIT, Cambridge, MA

    Google Scholar 

  • Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol 3(2):e31

    Article  PubMed Central  PubMed  Google Scholar 

  • Mel BW (1997) SEEMORE: combining color, shape, and texture histogramming in a neurally inspired approach to visual object recognition. Neural Comput 9:777–804

    Article  CAS  PubMed  Google Scholar 

  • Mineault P, Khawaja F, Butts D, Pack C (2012) Hierarchical processing of complex motion along the primate dorsal visual pathway. Proc Natl Acad Sci U S A 109(16):E972–E980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Reilly RC, Wyatte D, Herd S, Mingus B, Jilk DJ (2013) Recurrent processing during object recognition. Front Psychol 4:1–14

    Google Scholar 

  • Ostojic S, Brunel N (2011) From spiking neuron models to linear-nonlinear models. PLoS Comput Biol 7(1):e1001056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pack CC, Born RT (2008) Cortical mechanisms for the integration of visual motion. Elsevier, Oxford

    Google Scholar 

  • Perrett D, Oram M (1993) Neurophysiology of shape processing. Image Vis Comput 11(6):317–333

    Article  Google Scholar 

  • Perrone J, Thiele A (2002) A model of speed tuning in MT neurons. Vis Res 42(8):1035–1051

    Article  PubMed  Google Scholar 

  • Poggio T, Smale S (2003) The Mathematics of Learning: Dealing with Data. Notices Amer. Math. Soc 50(5):537–544

    Google Scholar 

  • Rieke F, Warland D, van Steveninck R, Bialek W, van Steveninck R (1997) Spikes. MIT Press, Cambridge, MA

    Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Ringach DL (2004) Mapping receptive fields in primary visual cortex. J Physiol 558(Pt 3):717–728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal elements of macaque v1 receptive fields. Neuron 46(6):945–956

    Article  CAS  PubMed  Google Scholar 

  • Rust NC, Mante V, Simoncelli EP, Movshon JA (2006) How MT cells analyze the motion of visual patterns. Nat Neurosci 9(11):1421–1431

    Article  CAS  PubMed  Google Scholar 

  • Series P, Lorenceau J, Fregnac Y (2003) The silent surround of V1 receptive fields: theory and experiments. J Physiol 97:453–474

    Google Scholar 

  • Serre T, Poggio T (2010) A neuromorphic approach to computer vision. Commun ACM 53(10):54

    Article  Google Scholar 

  • Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T (2007a) A quantitative theory of immediate visual recognition. Prog Brain Res 165:33

    Article  PubMed  Google Scholar 

  • Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T (2007b) A quantitative theory of immediate visual recognition. Prog Brain Res 165(06):33–56

    Article  PubMed  Google Scholar 

  • Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. Vision Res 38(5):743–761

    Article  CAS  PubMed  Google Scholar 

  • Thorpe SJ (2002) Ultra-rapid scene categorisation with a wave of spikes. Proc Biol Mot Comput Vis, 25(25):1–15

    Google Scholar 

  • Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci U S A 105(49):19514–19519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ullman S, Vidal-Naquet M, Sali E (2002) Visual features of intermediate complexity and their use in classification. Nat Neurosci 5(7):682–687

    CAS  PubMed  Google Scholar 

  • Wallis G, Rolls ET (1997) A model of invariant object recognition in the visual system. Prog Neurobiol 51:167–194

    Article  CAS  PubMed  Google Scholar 

  • Wersing H, Koerner E (2003) Learning optimized features for hierarchical models of invariant recognition. Neural Comput 15(7):1559–1588

    Article  PubMed  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Serre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Serre, T. (2014). Hierarchical Models of the Visual System. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_345-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_345-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Hierarchical Models of the Visual System
    Published:
    12 March 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_345-2

  2. Original

    Hierarchical Models of the Visual System
    Published:
    26 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_345-1